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(a) Noise based on a continuous target spectrum.

(b) Structure-preserving procedural texture deduced from an example.

Figure 1: Local random-phase noise can approximate an arbitrary power spectral density. It provides high-speed procedural reproduction
of Gaussian patterns defined by a continuous spectrum (a) or by an input example. A broader range of procedural textures by example can

be generated by preserving input structures such as skin wrinkles in (b).

Abstract

Local random-phase noise is a noise model for procedural textur-
ing. It is defined on a regular spatial grid by local noises, which are
sums of cosines with random phase. Our model is versatile thanks
to separate sampling in the spatial and spectral domains. There-
fore, it encompasses Gabor noise and noise by Fourier series. A
stratified spectral sampling allows for a faithful yet compact and
efficient reproduction of an arbitrary power spectrum. Noise by ex-
ample is therefore obtained faster than state-of-the-art techniques.
As a second contribution we address texture by example and gener-
ate not only Gaussian patterns but also structured features present
in the input. This is achieved by fixing the phase on some part of
the spectrum. Generated textures are continuous and non-repetitive.
Results show unprecedented framerates and a flexible visual result:
users can control with one parameter the blending between noise
by example and structured texture synthesis.
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1 Introduction

Procedural textures based on noise, like Perlin’s famous marble
[1985], have been introduced in the mid-eighties [Ebert et al. 2002].
They unify a number of properties that still no other texturing tech-
nique is able to unify, four of the most compelling ones being:

1. not any kind of repetition, due to the random nature of noise;
2. continuity (i.e. resolution independence);

3. computation on a per-pixel basis, thus allowing for straight-
forward parallel implementations;

4. genericity (i.e. a single texture model allows users to generate
visual variants by tuning parameters).

These properties have probably contributed to the widespread use of
this kind of textures for a broad range of computer graphics appli-
cations like simulators and computer generated images in animated
movies. Noise is however hard to control. Subsequently, creating
procedural textures based on noise is a challenging and persistent
problem, that recent noise “by-example” approaches [Galerne et al.
2012; Gilet et al. 2012] attempt to tackle. Control is improved by
generating noise with an arbitrary power spectral density (PSD).
But strong limitations remain. First, latest approaches exclusively
build upon the power spectrum. Corresponding patterns are Gaus-
sian, which represents a narrow subset of irregular textures. Sec-
ond, these methods use a high quality but computationally expen-
sive sparse convolution, involving a large number of band-pass filter
kernels. Despite parallel GPU implementations, high noise evalua-
tion costs are reported [Galerne et al. 2012; Gilet et al. 2012], thus
either limiting quality or framerates.

This paper aims at getting over these two limitations by introduc-
ing a novel procedural noise. It is defined as a blending of local
noises centered on a regular spatial grid, each of them being a sum
of cosines with random phase. Therefore, we call it local random-
phase (LRP) noise. Separate sampling in the spatial and spectral
domains provide versatility: our model can simulate Gabor noise
by sparse convolution as well as noise by Fourier series. As for
Galerne et al. [2012] and Gilet et al. [2012], the power spectrum
can be controlled using a discrete example. A stratified sampling in
the spectral domain provides efficient generation of stochastic func-
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tions with different looks while controlling the PSD. The stratifica-
tion is pre-processed while random sampling and noise generation
is processed at runtime. By improving the trade-off between spec-
tral accuracy and spatial sampling, it is faster than sparse convo-
lution and filtering, and thus better adapted to real-time procedural
texturing. We provide parameter estimates such that the process can
be controlled by only one parameter: the budget of cosines, which
defines the computation load.

In a second step, we address the automatic computation of proce-
dural textures from examples containing not only random patterns
but also structure. It is well known that structure can be found in
phase [Oppenheim and Lim 1981]. Assuming that the region of
the spectrum encoding structure is known, our model naturally al-
lows for preserving the input phase in this spectral region only. We
thus reproduce the input structure while still having a random look.
We demonstrate this by selecting the region with highest energies,
which is known to contain structure information for near regular
textures [Nicoll et al. 2005]. When applying this idea to irregular
or stochastic textures it creates a periodic structure which induces
an unnatural regularity. Periodicity is broken by using turbulence
[Perlin 1985] and random placement. Their parameters are obtained
from the example spectrum itself, therefore keeping unspoiled the
global spectral energy distribution of the example. The balance be-
tween structure (fixed phase) and noise (random phase) is easy to
tune with a single parameter. Resulting textures preserve main vi-
sual characteristics and implicitly fulfill the four aforementioned
properties. An example of structured irregular procedural texture
from an input example is shown in figure 1(b).

The remaining parts of the paper are organized as follows: in the
next section we propose a brief overview of works related to noise.
Then, we describe our noise model using random phase functions
(section 3) and how such a noise can be given an arbitrary PSD so
that noise by example is made possible (section 4). Next, we de-
scribe how to synthesize procedural textures from example images
that also contain structured features (section 5). Finally, before con-
cluding, we show results and discuss limitations.

2 Related works

Procedural noise. Mainly two types of techniques have been pro-
posed to compute “infinite” procedural noise in computer graphics
(see survey of Lagae et al. [2010a]): 1) lattice-based approaches
[Perlin 1985] and 2) sparse convolution [Lewis 1987] using spa-
tial filter functions and uniform random point distributions (im-
pulses) computed on-the-fly using pseudo random number gener-
ation (PRNG). Sparse convolution permits a direct spectral control
because the power spectrum of the resulting noise is linked to the
filter kernel function. The Gabor kernel is particularly well adapted
[Lagae et al. 2009] as it unifies spatial and spectral characteristics.
Lagae and Drettakis [2011] further introduce the use of a phase to
process aliasing raised by solid noise. However, convolution noise
demands high computational resources, especially when the power
spectrum is complex. Many impulses become necessary to guaran-
tee both good spatial and frequency coverage. Faster noises, like
anisotropic noise [Goldberg et al. 2008], filter white noise images
using an inverse FT. Such methods define discrete noises on a tiny
period and use an explicit data array instead of PRNG.

Procedural textures by example. We are concerned with irregular
patterns, which can be represented by noise. Only few techniques
attempt to obtain noise parameters to match an input exemplar.
Ghazanfarpour and Dischler [1995] apply filtering of white noise.
The filtered noise is used to define spatial distortions with con-
trolled spectral characteristics, but without aiming for visual sim-
ilarity. Dischler and Ghazanfarpour [1997] compute noise-based

displacement textures obtained from an example 1D profile. A
combined spectral and histogram analysis is used to adjust the pa-
rameters of a sum of gradient noises. Bourque and Dudek [2004]
uses a spectral metric to browse a database of procedural textures
and to adjust their parameters. It is a database querying technique,
not an automatic by example procedural texture synthesis tech-
nique. Gilet et al. [2010] show that noise, based on sparse convolu-
tion with Gabor filters [Lagae et al. 2009], can be applied to model
some subsets of anisotropic color textures by example, since Gabor
noise is characterized by Gaussian ellipses in the spectral domain.
Lagae et al. [2010b] describes a method for generating isotropic
noise-like textures by separating frequency bands using a sum of
multi-scale wavelet noises [Cook and DeRose 2005]. Galerne et
al. [2012] exploits the spectral characteristics of Gabor noise [La-
gae et al. 2009]. The authors propose a robust and general method
for creating patterns with arbitrary PSD from an example. Multiple
band-pass Gabor filters are used. The parameters of the filters are
obtained by expressing the spectral domain as a sum of multi-scale
shifted Gaussian functions. Gilet et al. [2012] likewise propose to
use band-pass filter kernels. In this case, box functions are used to
approximate an arbitrary power spectrum.

Random patterns defined by Fourier synthesis. Fourier synthesis
has a long history in texture generation. In some early work, Gard-
ner [1985] uses a set of combined cosines with modulated phase to
define natural stochastic textures, such as clouds. Ghazanfarpour
and Dischler [1996] also use large amounts of cosines to define
solid textures. In both cases, the problem is that too many cosines
are necessary to generate non-periodic stochastic patterns. Other
techniques have used an inverse FT with random phase or white
noise filtering to define patterns [Saupe 1988; van Wijk 1991; Dis-
chler et al. 1998; Galerne et al. 2010] according to some predefined
power spectrum. But obtained textures are discrete, periodic and do
not define noise functions.

Runtime tile-based procedural texturing. Tile or patch based
techniques [Cohen et al. 2003; Lagae and Dutré 2006; Vanhoey
et al. 2013] consist in random arrangements of pre-computed tex-
ture pieces generated from one or multiple exemplars. PRNG is
used to select at runtime the tiles and / or contents, thus break-
ing periodicity. But these techniques repeat over and over again
the same tiles / patches (i.e. rigorously identical contents) even for
irregular textures, which is in contradiction with the random and
non-repetitive nature of natural irregular patterns.

3 Noise model

A noise n(z) in the spatial domain is characterized in the spectral
domain by its power spectral density (PSD), i.e. the energy distribu-
tion |73(f)|?, where 7i denotes the Fourier transform. The challenge
for a noise model consists in allowing for efficient computation and
precise approximation for a given PSD.

We define a new noise model by the following equation:

I J
n(z) = Zw (Hw%‘sz) ZAM cos(2rfi;-x+ i) (1)
=1

j=1

It is a mix of local noises with random phase, as illustrated in fig-
ure 2(b). The locality is controlled by a decreasing window w of
width A centered at spatial samples ;. Each local noise is a sum of
cosines (sum over j) such that i) randomness is provided by random
phases ¢; ; and frequencies f; ;, and ii) the spectrum is controlled
by sampled frequencies f; ; and amplitudes A; ;. Therefore we call
it local random-phase (LRP) noise.
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Figure 2: LRP noise (b) encompass noise by Fourier series (a) and
Gabor noise (c). It is a mix of local noises with fixed PSD and
random phase. It enables an optimized sampling in the spatial and
spectral domains.

Equation (1) applies to any dimension. In this paper we consider
2D positions x and frequencies f. The product f - x in the cosine
denotes the dot product.

This model can be seen as a generalization of two standard tech-
niques: noise by Fourier series and Gabor noise. Local random-
phase noise provides a tunable compromise between the two. In
the following, we explain its relation to them and discuss the pa-
rameters of equation (1) in detail.

3.1 Noise by Fourier series

One classical way of computing a noise with a given PSD is by in-
verse FT of its spectrum: amplitude is given by the PSD and phase
is random (see figure 2(a)). It amounts to defining the noise by
Fourier series (FS) as ijl Ajcos(2nf; - © 4+ ;) with random
;. The approach by inverse FT has major drawbacks: i) the noise
is periodic, ii) it is computationally intensive, and iii) discrete im-
plementation by inverse FFT is resolution dependent.

Note that FS noise equals the interior sum in equation (1): it can
be seen as the limit of our model when the window size A tends to
infinity. Stated otherwise, our model locally blends FS noises using
windows w, thereby breaking periodicity. Moreover, the complex-
ity drops because the number J of cosines is low. So the com-
putation becomes tractable in the spatial domain and the noise is
resolution independent.

3.2 Gabor noise

Another popular way consists in filtering a white noise approxi-
mation with a Gabor kernel [Lagae et al. 2009]. The filtering is
processed by a sparse convolution in the spatial domain (see fig-

ure 2(c)): So1_, Aqw (w) cos(2m fi - (x — x;)), where w is

a truncated Gaussian. The power spectrum is controlled through f;

and A; while randomness is provided by random positions x; of the
impulses. At a given position x, the sum runs over a neighborhood
proportional to A. Since the spectral resolution is 1/A, the more
precise the PSD approximation, the more impulses are necessary.

Our model can simulate Gabor noise by fixing one cosine per im-
pulse (J = 1) and defining the phase as a function of random im-
pulse positions (y;,; = —f - ;). However, by decorrelating posi-
tions z; and phases ;,;, the computational efficiency is improved
because 1) the spatial sampling can be regular, and ii) one can in-
crease the spectral sampling J independently.

3.3 Local random-phase noise

The LRP noise model, defined by equation (1) is controlled by a
series of parameters in the spatial domain (I, x;, A, w) and in the
spectral domain (J, f; j, Aij, @i,;). In the following, we explain
how to fix the window w with respect to a regular spatial lattice x;
such that, for any position z, the outer sum runs over I = 9 spatial
samples only. Defining values for f; ;, A; ; and ¢;_; is the problem
of spectral sampling that we address in sections 4 and 5. The two
remaining parameters A and J emphasize a key property of this
model: the spatial and spectral sampling densities are controlled
independently (resp. by A and J). First, this property provides
efficiency because it allows for balanced tuning of the sampling
between space and frequency. Second, it provides versatility: the
model can resemble sparse convolution when the noise has a simple
spectrum, or Fourier series when fine spectral discrete control is
needed. Third, it allows for capturing spatial structures by phase
control (see section 5). Figure 3 illustrates the influence of spatial
and spectral sampling densities on an anisotropic noise.

3.4 Spatial sampling

Since the random phase is de-correlated from the window positions,
we can fix x; on an regular integer lattice. w is chosen to have
a value w(0) = 1 and to vanish outside [—1.5;1.5]. By doing
so, we get rid of random sparse sampling, thus optimizing spatial
coverage. This spatial sampling fixedly depends on the window
size controlled only by A from now on. Furthermore, we control
the computational complexity: the first sum in equation (1) runs
over a constant amount of only I = 9 neighboring spatial samples.

As a counterpart to the regular sampling, LRP noise is not strictly
stationary. However, thanks to the shape of w (see section 3.6), and
to its size related to the sampling rate, the envelope varies less than
5%. Thus no grid artifacts are visible in practice.

3.5 Control of the spectral leakage

The quality of a noise n depends on how precisely we control
its spectrum. To explain the leakage problem, let us generate an
anisotropic noise of fixed frequency f by equation (1). Cosines of
frequency f are windowed with w, which causes 7 to develop non-
zero values (leaks) around f according to w. We want as much
energy as possible to be concentrated around f, which is known
as the spectral concentration problem. The leaks are impacted by
the shape of the window (see section 3.6) and by its size A. Actu-
ally, they are proportional to 1/A. Stated differently, the larger w,
the narrower @ and vice versa. This is well known from Heisen-
berg’s uncertainty theorem: there is a lower bound to the product
of variances in the spatial and spectral domains. Thus a trade-off is
necessary.

The smaller A, the more leaks around the frequency f (figure 3 top
row). Conversely, the larger A, the more precise the power spec-
trum. However, a too large A reduces the visual quality of noise,
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Figure 3: Anisotropic noise generated for increasing spatial sam-
pling (bottom up) and spectral sampling (from left to right). In-
creasing spectral sampling quickly improves visual quality (bottom
lines from left to right). Fine spatial sampling fails to compensate
insufficient spectral sampling (top left). The spectral leakage in-
creases as the window becomes narrow (spectra, bottom up).

because the regularity of the cosines becomes visible (1/f period)
and the result “lacks randomness” (figure 3 bottom left). One can be
relieved of this constraint by increasing the spectral sampling, i.e.
increasing the number J of cosines and random phases (figure 3 left
to right). A good compromise is given by A o v/J/F, where F is
the resolution in the spectral domain, i.e. the maximum frequency
of the signal. A more precise relation is given in section 4 for the
discrete case.

3.6 Choice for the window w

The shape of the window w influences spectral leakage. An ideal
solution to the spectral concentration problem is provided by the
discrete prolate spheroidal sequence. But numerical computations
are complex and cannot be implemented easily on the GPU for run-
time computation. A fair approximation is provided by the Kaiser-
Bessel window function

w(y) = bs (3WW) /bs(37)
i m (%)Qm+3 is the modified

Bessel function with parameter o = 3, which we approximate by
5 terms (m < 4). Normalization by bs(3m) ensures w(0) = 1.

where ba—3(z)

Normalization of y by 1.5 and clamping beyond £1.5 make the
window fit within the desired interval [—1.5, 1.5].

This window tends towards a Gaussian shape when « is increased.
Using o = 3, it resembles a Gaussian, which could be used alterna-
tively. However, the spectral concentration properties of a Gaussian
are less interesting and it has the drawback of requiring itself yet
another zero-ended window, because it extends to infinity.

4 Noise by example

In this section, we explain our strategy to meet an arbitrary PSD.
The phase ¢ is completely random and the cosine budget .J is user-
fixed. The challenge consists in sparsely sampling the frequency
domain (f; ;) with corresponding amplitudes (A;,;), such that the
resulting noise approximates a given PSD A?(f).

If the sampling were dense, one could use the target PSD as prob-
ability density function for f; ; (to give more probability to high
energy regions) and one could set A; ; = A(/f;,;). This does not
work in our context of sparse sampling (J is typically a few tens to
keep computation time low). Thus features in the spectral domain
would be missed, such as narrow peaks that concentrate a lot of
energy.

We state this problem as a compromise between spectral coverage
and power approximation as follows. Each local noise (fixed ¢ in
equation (1)) is a sum of cosines of frequencies f;, ; localized by the
2D window W (z/A) = w(||z||/A). So its spectrum is a weighted

sum of /W(A f) centered at f; ; (see additional material for detailed

calculations). Since W is a decreasing radial function, one sample
(fi,j, As,;) contributes to the PSD with a power Af’ ; in a neighbor-
hood of size 1/A around f; ;. In this light the frequencies should
be well distributed to cover the spectrum with a minimum budget.
On the other hand high power regions should be given more sam-
ples because they strongly influence the spatial characteristics of
noise. We solve this problem by using stratified sampling.

In the following we first explain the stratified sampling strategy.
Then we show how to build and to sample the strata. The target PSD
may be continuous or discrete and we provide details for a discrete
T x T spectrum. Finally we recap the practical implementation that
provides noise generation from an input example texture.

4.1 Stratified sampling

The principle of stratified sampling is to partition the spectral do-
main into disjoint regions S called strata. Each stratum is then
sampled independently. The first advantage is a better coverage
of the domain because each stratum is ensured of being sampled.
The second one is to control the distribution of the sampling budget
among the strata. In equation (1), we would like each stratum to
have its own spectral sampling density Js and corresponding spa-
tial sampling period As. It amounts to defining the noise

)= ns(x) )
S

as a sum of several noises ng (one per stratum S), with disjoint
spectra, each of them being governed by equation (1). The chal-
lenge is to define L strata and distribute the sampling budget J
such that the generated noise spectrum amplitude |72| approximates
a target amplitude A as precisely as possible.
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Figure 4: Intra-stratum sampling. The input spectrum (a) is par-
titioned into strata (b) with the same amount of energy. Each stra-
tum (c) is shrunk (d) and broken into sub-strata by k-means (e).
One random frequency is drawn in each sub-stratum such that the
spectral windows roughly cover the stratum (f).

4.2 Strata building

A partition of the spectral domain independent of the PSD, such as a
regular grid, well covers the domain but is not efficient in our case
because of two reasons. First it equally allocates samples to low
and high energy regions. We solve this by building strata that have
the same energy. Second the power density may vary a lot within
a stratum, so a few windows W cannot approximate precisely the
spectrum. We solve this by building strata that have homogeneous
power densities.

To achieve this we partition the PSD range (i.e. the image of A?%)
into L intervals I's and we define the strata S = {f|A*(f) € Is}.
In this way strata have homogeneous power densities. In the dis-
crete setting we uniquely define the intervals such that the stratum
energies Es = } ¢ A?(f) are equal, which ends up in small
strata of high PSD and large strata of low PSD (figure 4b). We then
distribute the sampling budget uniformly Js = J/L such that high
power strata are given more precision relatively to their size.

When applied on complex or noisy spectra such as example based
spectra (section 4.4), a low number L of strata must be chosen in or-
der to avoid too fragmented strata that would be difficult to sample.
We actually use L = 4 in all our examples. It therefore produces
large strata which may still have complex shapes.

4.3 Intra-stratum sampling

Here we explain how to draw the Jg samples (f; ;, A; ;) in a given
stratum S. As explained above it amounts to approximating the
spectrum in S by a sum of W (Ag f) centered at f; ; and weighted
by Af’ ;- The sampling is illustrated by figure 4. It must meet three
goals: 1) avoid spectral leakage, i.e. avoid diffusing too much en-
ergy outside S; ii) optimize the spectral coverage of S} iii) approx-
imate the amplitude in S.

To avoid spectral leakage, we do not pick the frequencies in the
entire stratum. .S is shrunk by a constant ¢ defined such that at
least 75% of the scaled window energy |As@(Asf)|* is within
[—;8]. The 75% threshold is empirical. Calculating ¢ is solved
numerically for any value of Ag. Discrete shrinking is performed
by morphological erosion, modified so that strata smaller than ¢ are
not completely swept out.

To optimize the coverage while saving randomness in the frequen-
cies, the shrunk stratum is broken into Jg sub-strata using k-means
with random seeding. Then one single frequency f; ; is uniformly
drawn in each sub-stratum. Since the spectrum is symmetric it is
applied on half of it (figure 4f). Since sub-strata may have an ar-
bitrary shape (see figure 4e), practical implementation consists in
storing the sub-stratum frequencies into lookup tables, which are
then randomly accessed.

A good spectral coverage also requires the spectral windows
W(As f) to be large enough so that Js windows can cover S.
As shown by white circles in figure 4 the windows’ footprints are
disks of radius 1/Ag. In the discrete setting we define Ag =
T+/Js/+/2|S|, where | S| is the number of discrete frequencies in
S. Thus the area covered by Js footprints is proportional to the
stratum area |S|/T2. The constant factor, here 2, depends on the
actual window shape: we fix it such that the windows slightly over-
lap.

For each frequency f; ; we now have to define an amplitude A; ;
such that the target PSD is well approximated over S. Since S
contains homogeneous amplitudes and is sparsely sampled, we tar-
get a constant value A; ; = As. We aim at the energy over the
stratum to be preserved: we define As such that the noise energy
E(ns) = [|ns|” is equal to Es = [ A®. In the discrete setting
we actually define

1/2

co —1/2
As = | > A% (A%sz / er(r)dr> 3)
0

fes

where Es = 3 A%(f) is computed by discrete summation.
The constant [ rw?(r)dr ~ 0.1126 for the Kaiser-Bessel win-

dow. Formula (3) is based on an analytical derivation of 725 which
is detailed in the additional material.

4.4 Noise by example with discrete PSD

We now explain in practical terms how the sampling is implemented
for an arbitrary power spectrum, derived from a user-supplied
“example-noise” image. Figure 5 summarizes the procedure. Only
one parameter is tunable by the user: the cosine budget J which
defines the computation load.

A first series of computations are pre-processed on the CPU:

Computing the input PSD. The FFT of the noise image is com-
puted. To get a better approximation of the power spectral
density, we use Welch’s method [1967]. It consists in averag-
ing the power spectra of multiple FFTs computed on crops of
size T' x T. This defines the frequency resolution F' = 1/T
(see section 3.5). T'is chosen as the largest power of two
strictly lower than the input image size.

Stratification. The obtained power spectrum is partitioned into
L = 4 strata as explained in section 4.2. To each stratum
S, we associate Jg = J/L cosines.

Sampling pre-processing. As explained in section 4.3, for each
stratum S we fix As = Tv/Js/+/2|S]| and compute As us-
ing equation (3). Each stratum is shrunk by morphological
erosion and broken into Js sub-strata using k-means.

Then we transfer to the GPU the values of Js, Ag and Ag, as
well as the tables of sub-strata frequencies. The following compu-
tations are all done on-the-fly, to evaluate the noise at continuous
positions x:
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Figure 5: Noise by example workflow. The input example is analyzed by Fourier transform. It’s spectrum is decomposed into strata S
according to energy levels. Each stratum has its own frequency sampling and spatial lattice, leading to LRP noises ns with disjoint spectra

that are finally summed to get the final noise n.

Sampling. A single sample f;; is uniformly drawn per sub-
stratum. The amplitude A; ; is given by As. Phase ¢; ; is
random in [0; 27[. This is done using a linear congruential
pseudo-random number generator, initialized by a hash-code
computed from |z/Ag].

Evaluation. The noise is evaluated by formulas (2) and (1).

5 Textures by example

In previous sections, we have shown how our LRP noise model can
generate Gaussian patterns with arbitrary PSD. In this section, we
target a new goal that is made possible by our model: reproduc-
ing example textures containing not only Gaussian patterns but also
visually structured features.

Structure in an image defines the most noticeable features like
stripes, wood veins or color patterns (e.g. in figures 8 and 13). In
the spectral domain, they are characterized not only by the PSD, but
also by the phase [Oppenheim and Lim 1981]. Our model (equa-
tion (1)) allows to fix phases independently from the spatial sam-
pling, unlike previous procedural methods. We will thus fix the
phases of a (spectral) region composed of the frequencies encoding
the structure. The remaining frequencies are left random-phased
using the stratified sampling of section 4, as to keep the advantage
of procedural noise. Regular structure being characterized by high
energy [Nicoll et al. 2005], this region will be built by assembling
highest-energy frequencies until it assembles an arbitrary propor-
tion of the total energy.

5.1 Structure in fixed phases

The LRP noise model allows for free phase selection in equa-
tion (1). When evaluating like in section 4, random phase generates
random features. At the other end an exact periodic reproduction of
the input image can be achieved by fixing the phase ¢(f) and the
amplitude A(f) to those of the example’s FT (it amounts to inverse
FT). We define a trade-off between these two ends by fixing the
phase and the amplitude for a region R that “contains the structure”
while the complement is still computed as in section 4:

n:nR—&—E ns where
s

Zw <||x IZH) ZA Jcos(2mf-x+p(f)) 4

i=1 fER

r=0% 5% 10% 20% 100%
|R| = 0% 0.2% 0.8% 2.8% 100%

(a) Region R, full spectrum on the right

(b) Synthesis of np

(c) Synthesis of n

Figure 6: Fixed phases for high-energy regions (J = 50). From left
to right the region R grows while its energy interval gets larger. The
corresponding structure ng better captures structures until being
equal to the input (right). The final noise n exchanges randomness
for faithfulness.

also follows equation 1 with no randomness (fixed A and ), and
finest sampling Jg = |R|. To have the same 7" x T resolution as
the PSD we get A and ¢ from any of the blocks used in Welch’s
method.

To determine R in practice, we introduce a new tunable parameter
r € [0; 1] such that the proportion of total energy contained within
R is r. To build R with this respect, we iteratively add the highest-
amplitude frequencies to R.

Figure 6 shows R growing from void (left) to full energy (right):
nr gradually captures the input texture while n looses randomness.
At the extremities, n varies from a fully procedural (r = 0) to a
copy of the original sample (r = 1). The irregular structure is well
preserved, for instance when r ~ 20%.



Figure 7: Near regular textures are faithfully reproduced with
structure preservation (J = 50, r = 10%). Neither turbulence
nor random placement is required.

(c) +turb.  (d) + rand. pl. e)n

@In  (b) ng

Figure 8: Texture by example. The main features of the input (a) are
reproduced in (b) thanks to the model of equation (4), but introduce
periodicity and repetition. Feature repetition is discarded in (c) by
turbulence: features are spatially distorted. Periodicity is broken
in (d) by random placement. Final result n is obtained by adding
random phase strata ngs.

5.2 Repetition and periodicity

The counterpart to fixing the spectrum in R is that we have to deal
with repetition (the same pattern appears at multiple positions) and
periodicity (similar patterns appear at regularly spaced positions).
For near regular textures like in figure 7 this is not a problem. How-
ever, for less regular textures, it provides visual artifacts when r
grows (see figure 8(b)). We remove them by using two widely-used
techniques.

Breaking repetition. In order to break repetition of major fea-
tures’ shapes, we distort space like in Perlin’s “image synthesizer”
[1985]. We evaluate the structure function ngr at a perturbed po-
sition © + o nr(x) where o is a scaling factor and nr is a tur-
bulence function. It is defined by adding absolute values in equa-
tion (2): nr = ) 4 |ns| is computed from the (whole) spectrum
itself. This introduces a break of gradient (thus a sudden change
of direction) making a turbulence-based deformation well match-
ing natural brownian motion-like phenomena. Since it is based on
the very spectrum of the noise the features are distorted but not bro-
ken, as shown in figure 8(c). The scaling factor o is easy to tune:
it must match the size of typical features of the texture. A rough
stratification and a low cosine budget is actually sufficient. Some
more examples and details are given in additional material.

Breaking periodicity. When a lot of structure is preserved fea-
tures appear at regular spatial intervals. In figures 8(b) and 8(c) for
example, one can guess a 2 X 2 regular grid, regardless of turbu-
lence. This is classically solved by randomizing spatial distribution.
Similarly to quilting [Efros and Freeman 2001] or Chaos Mosaics
[Xu et al. 2002] we randomly shift blocks of size 1/2. This is done

Select Jgr frcqucnclcs + blockwise ng

Block—
wise

Blockwise PSD

Select
Jr frcq

nR Subdlv -.

Structure image

PSD on R

Figure 9: Computation load is reduced by a pre-computed iterative
subdivision process. nr has to be evaluated using only Jr cosines.
When Jr frequencies cannot reproduce the structure image, the lat-
ter is regularly subdivided in always smaller blocks. Block-wise FT
are computed and Jr frequencies per block are selected (red pix-
els) for synthesis of nr by inverse FT. When the result is satisfying
(below an error threshold w.r.t. the structure image), subdivision
stops.

by evaluating n at the shifted position z + ¢ (| 2z ) where ¢ is a
hash-code applied on both coordinates of z. This way, periodicity
is avoided: see figure 8(d). The size 1/2 is an arbitrary compromise
between a sufficient randomization and preservation of local spatial
coherence.

In practice, partial structure preservation works well for r €
[0,20%]. When r grows, turbulence and random placement be-
come more and more useful. Note that when both are used, random
placement must be applied first in order to ensure continuity of the
spatial distortion all over space. It would make no sense to apply
turbulence independently to individual texture blocks, because dis-
continuities would become visible on the block borders.

5.3 Complexity reduction

Once R has been pre-computed, | R| amplitudes and phases have
been stored, and thus evaluation is achieved using equation (4) for
R and (2) for the remaining PSD. However, evaluating |R| cosine
functions may be intractable. To define a constant computation load
respecting the user-provided cosine budget .J, we reduce the num-
ber of cosine evaluations for R to a proportion of the cosine budget,
namely Jr = rJ. Stratification for the remaining part of the PSD
will then benefit from (1 — r).J samples to distribute over its spec-
trum.

Figure 9 shows how we proceed to reduce the number of cosine
evaluations. Let’s call the structure image the inverse Fourier trans-
form of the spectrum on R only, which is what we want to ap-
proximate by nr with Jr cosines only. Firstly we select the Jr
highest-amplitude frequencies. Then n r is evaluated with these Jr
frequencies at the positions of the pixels of the structure image. We
define the result as satisfying if the average color deviation (com-
pared to the structure image) is below the color precision (1,/256
in general). If it is not, an iterative process begins. The structure
image is subdivided by a regular grid and a block-wise FFT is com-
puted. Then, the Jr highest-amplitude frequencies are selected for
each block. Finally, nr is computed by block and re-assembled
for evaluation. AR is set to the block size so as to handle transi-
tions. The algorithm stops when the result is satisfying, otherwise
it iterates with a new subdivision step.

This way, global low-frequency structure can be reconstructed at a
reduced cost. We are actually trading continuity for computational
efficiency here. Depending on the input image as well as parame-
ters J and r, the subdivision process may iterate more or less. At
the extreme, one pixel forms a block and its color is then exactly
encoded by the only zero frequency. Tests are shown in the addi-
tional material as well as a step-by-step description of the complete
procedure.



6 Results

In this section we discuss qualitative results and performances. We
compare our method to patch-based techniques and to procedural
techniques. All performances result from a real-time implemen-
tation algorithm on an nVidia GeForce GTX 780 with 3GB video
memory using a deferred shading pipeline. Amplitudes, frequen-
cies and phases are stored into GPU memory using Shader Storage
Buffer Objects for direct runtime access.

Color representation. Our examples show color whereas our
formula operate on a single channel only. Synthesizing texture with
noise in RGB space is tedious: unseen colors can easily arise when
channels are treated independently. Solving this is a complex prob-
lem which is out of scope for this paper. The solution usually con-
sists in either using an indirection in a color table, or using a color
space with channels as independent as possible. Here we use a mix
of these two approaches based on the color representation proposed
by Vanhoey et al. [2013]. It works well when the input texture ex-
hibits a few dominant colors and it avoids histogram equalization.
Technical details are provided in additional material.

6.1 Noise with arbitrary PSD

The LRP-noise model can approximate an arbitrary PSD which
may be continuous or discrete. Noise by example is made possi-
ble by computing a target discrete PSD from an input example.

We compare results to Lagae et al. [2009] for continuous spectra.
In general, our method reports a better quality/complexity ratio: a
computation time gain of about a factor of 2 is observed at equal
quality. This is because of a better spectral/spatial sampling balance
that optimizes coverage in the spectral domain and therefore allows
for a regular sparse coverage in the spatial domain.

Equation (1) defines that a budget of J results in the computation
of 9 window functions plus 9J cosines per evaluation. For a fair
comparison with Lagae et al. [2009] in figure 10, we used 9.J im-
pulses, which corresponds to 9J cosines plus 9J Gaussian window
evaluations. Figure 10 shows two different spectra that result in
better local noise at equivalent cost when approximated with our
technique. Our results for J = 3 are for example of equivalent or
close quality to those obtained with J = 5 for Lagae et al. [2009].

6.2 Procedural texture by example.

In section 5, we presented a method to reproduce structured fea-
tures. This is where our method achieves an unmet goal: proce-
durally reproducing an input texture, including its structural com-
ponents. Our model blends between pure Gaussian textures and
textures consisting of random placement and spatial distortions.
Therefore, we compare to methods reproducing either one of them.

Patch-based techniques copy texture parts in order to generate
larger textures. This includes structural elements and therefore
structure preservation is optimal but repetition may generate un-
natural textures. Figure 11 compares our result (last column) with
patch-based techniques. In the first column, one can identify the
same repeated structures, which become obvious on larger textures.
Since our model adds randomness (noise, random placement, turbu-
lence), we trade perfect resemblance and visual matching for more
visual variety. In other words, our model may create texture fea-
tures that were not present in the input example. This adds realism
while structure preservation is still satisfying in figure 11.

One can observe our method for both color and displacement map-
ping on a 3D model in figure 12. It shows texture continuity, which
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Figure 10: Comparison of our LRP noise (2nd and 4th rows) with
Gabor kernels (1st and 3rd rows) on continuous ring-shaped spec-
tra. Evaluations for J = 1,3,5 (1 stratum) show that LRP noise
converges more rapidly.

- r=20%

r=20%

r=35%

Figure 11: Comparison of our LRP noise model (right) to patch-
based methods (left): [Kwatra et al. 2003] (first two rows) and
[Efros and Freeman 2001] (last two rows). LRP noise (J = 50)
has less resemblance but more variety, and it is continuous.



Figure 12: Example-based texturing of a 3D object (J = 50,
r = 30%). No artifacts appear when zooming in because the
model is continuous. Rendering speed for this 12002 framebuffer is
400 fps without texturing, 59 f ps with texturing, 23 fps with bump
mapping, and 7 fps with tessellation and displacement mapping.

Texture Rand phases Fixed phases + rand pl.
Fps / ms Fps | Mem. Fps/ms
ConcreteBare 1750/0.57 || 1780 | 5.2K | 1477/0.68
Ground 2330/0.43 || 2315 | 1.7K | 1983/0.50
ConcreteWorn || 2050/0.49 || 1990 | 3.9K | 1680/0.59
Fabric2004 1760/0.57 || 1760 | 3.2K | 1500/0.67
Rera 1800/0.56 || 1770 | 3.2K | 1420/0.70

Table 1: Comparison of performances (speed and memory). Tex-
ture names refer to those of figure 13: the same parameters J and r
were used. Measurements are for resolution 128 x 128 pixels and
the memory designates the stored frequencies.

is a property patch-based methods do not have: it extends to infinity
and is scale-independent (i.e. one can zoom in without resolution
loss).

As opposed to patch-based methods, noise-based procedural tex-
tures can generate continuous diverse content. Figure 13 shows
comparative results with state of the art method [Galerne et al.
2012]. The second and third column compare Gabor noise with
LRP noise (with fully random phases): equivalent results are ob-
tained. When fixing some phases, we overcome the major limita-
tion of this technique: its inability to reproduce the overall structure
of the input example. The last column shows that preserving struc-
ture is important to obtain a high quality resembling result.

Table 1 shows corresponding performances. The complexity is es-
sentially related to the number of special function calls (cos, w).
That is, 9(J + s) calls where s is the number of strata. In practice,
for LRP noise with simple PSD (e.g. figure 10), we obtain 36 to 54
calls (typically J = 3 to 5, s = 1). For noise by example, 306 to
486 calls are required (typically J = 30to 50, s = 4). This induces
that our texture evaluation is faster than Galerne et al. [2012]. Ta-
ble 1 shows that fixed phases imply no overload because the same
number of calls is required. Random placement penalizes the per-
formance (10 to 20% in practice, depending on 7) because blocks
have to be blended.

Input Gabor noise  Random phase n

(a) ConcreteBare

(b) Ground

r=20%

(c) ConcreteWorn

(d) Fabric2004

(e) Rera J =40 r=20%

Figure 13: An input texture and procedural textures generated re-
spectively by Galerne et al. [2012], by our technique with R = ()
(random phase) and with an arbitrary R (some fixed phases) plus
random placement.

6.3 Parameter management

The two main parameters of our model are the cosine budget J and
the energy ratio r separating phase-fixed and phase-random compo-
nents. The pre-processing takes less than 1 second for 256 input
images making the tuning interactive, as shown in the video. The
first parameter (J) can be set according to the quality/performance
trade-off. A few cosines are sufficient for simple spectra (see fig-
ures 3 and 10). Noise or texture by example generally requires
about 50 cosines. Examples of possible trade-offs are provided
as additional material. The second parameter (r) allows us to
smoothly blend between a pure Gaussian texture model and a tex-
ture exactly matching the input. In the latter case, our model re-
duces to applying turbulence and random placement. Figure 14
illustrates the influence of this ratio: structure may be lost if it is
too low (middle column).

Other parameters can generally be fixed (as A and L) or are no
specificity of our method (as o). In the additional material, we
provide many variants and tests about their sensitivity.



Figure 14: Role of the energy ratio: some structures may be lost if
it is set to low. Left: input. Middle: r = 20%. Right: r = 35%
(except bottom: 7 = 30%).

6.4 Limitations

Capturing structure. Our model assumes that structures can be
captured in a region of the spectrum. Some types of texture however
may have their structure spread over the entire frequency domain.
This is the case for features with precise shape and very coherent
color variations (induced by lighting for instance). Characterizing
them is still a challenge.

The result is that we cannot capture structure on some examples, as
in figure 15. In this case results are either too noisy (center) either
not continuous due to random placement (right). The turbulence
may also introduce too strong feature distortions.

Texture filtering. LRP noise is defined in the frequency domain
and can thus be filtered at runtime using frequency clamping:
cosines with too high frequencies (i.e. frequencies above a limit
defined according to the screen-space sampling rate) are faded out.
Since we encoded fixed phases on multiple blocks (section 5.3),
there are also multiple O-frequency values that cannot be faded
out. These values represent the mean of each block. To perform
anti-aliasing on the set of O-frequencies, further mip-mapping is
thus required.

Figure 15: On this example (left), selecting frequencies by thresh-
olding based on amplitude fails to separate structure from noisy
patterns. A too low r (center) results in lost structures whereas
a higher r (right) generates visual discontinuities induced by the
random placement.

For color textures, filtering is known to be difficult and would re-
quire further investigation. When using a color table, indices are
averaged instead of colors. Therefore we define a mipmap of the
color table for each block, using color probabilities as weights.

7 Conclusions

In this paper we presented a new noise model for procedural tex-
turing. It is defined as a blending of local noises centered on a reg-
ular spatial lattice. Each local noise is defined as a sum of cosines
with random phase, while frequencies and amplitudes are sampled
from a given power spectral density. A stratified spectral sampling
strategy allows for efficient noise by example, outperforming state-
of-the-art techniques. A key property of our model is the separate
spectral and spatial sampling, that provides performance and ver-
satility. It enjoys the nice properties of procedural approaches: no
repetition, continuous texture, straightforward parallel implementa-
tion, on-the-fly parameter tuning.

Our model also allows for preserving structures in the texture, as-
suming that the structure information can be identified by a region
in the spectrum. Structures are reproduced by saving the phases
in the corresponding region, while the complement still has ran-
dom phase. Thus we are able to generate a much broader range of
textures than other procedural noises. We show the effectiveness
of our approach on many examples whose structure is encoded in
high energy regions of the spectrum. Thus the user can easily bal-
ance between structure and noise with a single ratio.

An interesting problem would be to characterize the uniformity of
the r-slider w.r.t. the user-perceived “amount of structure” that is
preserved in the resulting texture. This is however a complex prob-
lem requiring a thorough user-study.

A very promising perspective is a better selection of the region for
structure in the spectrum. It would improve the range of textures
yet not requiring any change in LRP noise model.

Our noise model can be straightforwardly extended to any higher
dimension by using a n-D regular grid instead of a 2D grid. In
particular, we would like to investigate solid texture applications.

Surface noise allows for computing noise directly on the sur-
face. This allows to get rid of parameterization and distortions are
avoided. The strategy generally consists in projecting 3D impulses
in the tangent plane and computing the noise in this plane. In our
context a problem arises because the projection of a regular grid is
not a regular grid. In all our examples, we subsequently used a pa-
rameterization of the surface. An extension to surface noise would
be useful.
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