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Figure 1: Rendering of the Como Lake (4096×4096 heightfield) using our method combining mesh renderingand ray-casting. This frame
is rendered at 43 Hz on a viewport of 1900×700 px. The right part of the figure depicts the division of theterrain amongst the mesh and
ray-casting with its four levels-of-precision.

ABSTRACT

This paper presents a flexible hybrid method designed to render
heightfield data, such as terrains, on GPU. It combines two tradi-
tional techniques, namely mesh-based rendering and per-pixel ray-
casting. A heuristic is proposed to dynamically choose between
these two techniques. To balance rendering performance against
quality, an adaptive mechanism is introduced that depends on view-
ing conditions and heightfield characteristics. It managesthe pre-
cision of the ray-casting rendering, while mesh rendering is re-
served for the finest level of details. Our method is GPU accel-
erated and achieves real-time rendering performance with high ac-
curacy. Moreover, contrary to most terrains rendering methods, our
technique does not rely on time-consuming pre-processing steps to
update complex data structures. As a consequence, it gracefully
handles dynamic heightfields, making it useful for interactive ter-
rain edition or real-time simulation processes.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.3.6 [Computer Graphics]:
Methodology and Techniques—Graphics data structures and data
types; I.3.8 [Computer Graphics]: Applications

1 INTRODUCTION

Heightfield rendering at interactive frame rates has alwaysbeen an
important topic in computer graphics, whose main application is
terrain visualization, where the common representation isa regu-
lar sampling of the altitude. Finding out a good trade-off between
speed, visual accuracy and flexibility remains the most challeng-
ing issue. Some applications, like video games require veryfast
frame rates, while others rather require high accuracy, even if frame
rates are lower, like scientific visualization of 2D scalar fields or
geomatic-related data visualization. Others require thatterrains can
be edited dynamically in real-time.
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Most of the techniques can be broadly classified into two main
families: mesh-based techniques, which make use of hierarchical
representations, and ray-casting algorithms, which are now mainly
executed on GPU. To be practical, mesh-based rendering methods
do not render raw data and thus often involve pre-processingsteps.
As an example, an adaptive mesh reconstruction or the generation
of a hierarchical multi-scale structure for applying level-of-details
mechanisms are often used. Conversely, GPU ray-casting is able
to directly process raw terrain data. The straightforward use of raw
data, without heavy pre-processing, is interesting for interactive ap-
plications that involve non-static terrains. Interactiveterrain edi-
tion for graphical content creation in the field of virtual landscape
design is an important example of application. During real-time
simulation processes, such as terrain erosion or ocean waves, the
dynamic aspect is also crucial, as well as for scientific visualization
where parameters, like transfer functions, must remain editable in
real-time. Our motivation is to improve flexibility by offering a
heightfield rendering method which strongly limits pre-processings
and which makes no use of complex data structures, thus allowing
for dynamic terrain manipulations at interactive frame-rates.

Unfortunately, straightforward ray-casting of raw data, while
avoiding any pre-processing, remains too slow to be practical.
Speedup techniques further used introduce approximationsand
lower fidelity: Dick et al. [5] have shown that a mesh representa-
tion still performs better than a ray-casting technique formoderate
data resolution. Yet, mesh based methods tend to smooth reliefs
because they handle large data sets in a hierarchical way such as for
geometry clipmaps [14].

In this paper, we address such smoothing by combining a mesh
representation and a GPU based ray-casting rendering. The mesh
representation uses the full resolution of the data close tothe viewer,
while ray-casting rendering is performed further away. Ray-casting
precision is governed by the view distance and relief characteristics
so as too balance quality versus speed, as shown on Figure 1. The
use of one or the other rendering technique is driven by a heuris-
tic based on an analysis of the error induced by ray-casting.By
fully exploiting the GPU and by evaluating the ray-casting error,
our method improves the balance between real-time rendering per-



formance and high visual accuracy over existing techniques, still
allowing the data to be edited or dynamically modified.

The key points of our approach can be summarized as follows:

• a hybrid rendering method combining per-pixel ray-casting
and mesh rendering, both executed on GPU to provide inter-
active frame rates.

• a simple heuristic, based on an error evaluation of the ray-
casting rendering, to balance both methods and to maintain
high visual accuracy.

• a method using only simple data structures, without pre-
processing, thus able to handle dynamic heightfields.

The remainder of this paper is organized as follows: in Section 2,
we briefly review existing methods for heightfield rendering. In
Section 3, we present our rendering method. In Section 4, an anal-
ysis of a ray-casting algorithm is proposed and our adaptivemech-
anism is described in Section 4.2 with a detailed analysis. Finally,
some results are shown in Section 5, before concluding in Section 6.

2 RELATED WORKS

In the following three subsections, we respectively present mesh-
based rendering techniques, ray-casting-based renderingand hybrid
methods.

2.1 Heightfield rendering with meshes
Historically, the first family of terrain rendering methodsis based
on the use of triangular meshes. To reduce the amount of trian-
gles without sacrificing the terrain geometry, these methods use
different strategies, such as adaptive level-of-details meshing algo-
rithms [7, 8, 13], advanced data loading and caching mechanisms to
fully exploit GPU [12, 4, 10], or dedicated compression algorithms
[14, 6]. We refer the reader to the overview of Pajarola and Gobbetti
[18] for more details concerning these rendering techniques.

A good compromise between rendering quality and performance
is offered by the geometry clipmaps [14]. This simple approach
consists in selecting a level-of-detail in world space based on viewer
distance using a set of nested rectangular regions. It also proposes
a compression method associated to a regular mesh rendering.

2.2 Heightfield ray-casting

The second family of heightfield rendering techniques is based on
ray-casting. These methods were initially developed on CPU[16],
but with modern hardware, it becomes possible to execute them on
GPU.

Mantler and Jeschke [15] propose a rendering method using a
per-pixel ray-casting executed on GPU. This method was devel-
oped to integrate some other objects, like trees. There is noadaptive
mechanism but an empty space skipping algorithm accelerates the
ray intersection lookup with the heightfield. Jeong and Han [9] also
propose a per-pixel rendering of terrains using ray-casting, where
proxy geometry, to initiate ray-casting, is a simplified mesh of the
terrain. This process reduces the ray intersection lookup but intro-
duces a pre-processing step to build this proxy. If the heightfield is
dynamic, this step needs to be recomputed at each frame.

In addition to previously described techniques, while not specif-
ically targeting terrain rendering, relief mapping algorithms [20,
22, 21] are more focused on adding details to an object surface us-
ing a heightfield as input data. This class of algorithms, executed
on GPU, computes an approximate intersection between a ray and
the heightfield. To perform a more accurate and faster intersection
lookup, methods such as [2, 19] rely on heavy pre-processing. But
the major drawback is the important computation time, whichpre-
vents the data to be dynamic. Tevs et al. [23] propose a technique
to accelerate the ray lookup intersection. This algorithm is used and
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Figure 2: Diagram of our rendering pipeline. Arrows describe data
flow between each step of the whole rendering process and the GPU
memory.

improved by Dick et al. [5] to render large scale terrain split into
tiles. In this paper, the authors also demonstrate the viability of ray-
casting algorithms to render terrains but conclude that rasterization
techniques still remain more efficient for small and medium scale
terrains.

2.3 Hybrid techniques
One way to improve the rendering performance is to combine dif-
ferent rendering algorithms, choosing the best performingone for
a given situation. In this spirit, Becker et al. [3] were the first
to combine different kinds of relief rendering techniques:BRDF,
bump mapping and displacement mapping. Smooth transitionsare
then introduced to avoid popping artifacts when switching between
these three representations. Larue et al. [11] also proposea hybrid
algorithm to render the small canvas relief of digitized artpaintings.
They combine relief mapping with bump mapping and introduce
an adaptive mechanism which automatically chooses the better ren-
dering technique according to the current viewing conditions and
painting relief. We apply such a kind of approach to terrain render-
ing, and we combine mesh rendering and ray-casting depending on
viewing conditions and landscape data too.

3 HYBRID RENDERING METHOD PRINCIPLES

The principle of our hybrid rendering technique is summarized in
Figure 2. The terrain is divided into a regular set of identical square
cells. For each cell, the adaptive mechanism, guided by our heuris-
tic that will be described in the next section, chooses the best ren-
dering algorithm to use: mesh or ray-casting. The adaptive mecha-
nism also adjusts the ray-casting precision amongst predefined lev-
els. For each level a given shader is used. To further increases
performance, frustum culling is performed on cells during this pro-
cess. The work-flow is as follows: first, the heuristic is evaluated
for each cell on the GPU (see top of figure). Then, a read-back from



GPU memory to the main CPU memory is needed to group together
the cells that share a common shader. Finally, the data are displayed
precision levels by precision levels (see bottom of figure).

When the content of a cell is rendered using a mesh, vertex dis-
placement mapping is performed, using one quad of mesh stored on
GPU memory. This quad is designed to match the number of eleva-
tion points enclosed in any cell. This quad is overlaid on cells and
the vertex displacement mapping is steadily applied on the vertices
of this quad.

When ray-casting is selected, we use the algorithm described by
Policarpo et al. [20]. All the front faces of the box boundingthe
content of the cell are the rendering proxy: for each pixel drawn,
a ray is cast and the intersection with the heightfield is computed
using a linear search followed by a binary search. Both stepsare
performed using a fixed number of iterations. Note that a ray can
have no intersection with the heightfield during the traversal of the
box. Proxy boxes are adjusted to the height extend inside thecell,
to keep their footprint as tight as possible. To ensure proper conti-
nuity across cells boundaries, maximal and minimal height values
are computed using one pixel overlap with neighboring cells.

It could have been possible to apply a per-pixel precision modu-
lation within the ray-casting shader, but we experienced that adapta-
tion at cell level performs better due to performance issuesrelated
to dynamic branching on GPU at pixel-level. Therefore, we use
a pre-defined fixed number of ray-casting shaders each one corre-
sponding to a different level-of-precision.

Since our goal is to handle dynamic heightfields, no speedup
techniques involving many pre-computed data can be used, such as
safety zones used for empty space skipping [2, 19].

As can be seen in Figure 2 (right part), our combined rendering
method requires only minimal extraneous data on top of the height-
field data: cell subdivision information (e.g. the cell’s origin) and
minimal/maximal height values of its bounding box. When a terrain
is evolving dynamically, both minimal and maximal height values
as well as terrain normals evolve. Hence, these values need to be
updated accordingly. Fortunately, computing minimal and maximal
heights for each cell turns out to be a very light process, which can
be done interactively on GPU in parallel to the normals computa-
tions. In addition, since the terrain is divided into an independent
set of cells, only the altered cells can be updated in case of alocal
deformation or edition, keeping the operation costless.

Since our method targets direct use of heightfield data, it does not
make use of level-of-details techniques. Indeed, using a straightfor-
ward approach (direct geometrical mipmapping for example)does
not provide a sufficient control on the geometrical simplification as
with geometry clipmaps. As a consequence, data over smoothing
would be introduced, as shown in section 5. Using a more complex
approach for the level-of-details mechanism, based on a fineanaly-
sis of the data, may reduce the geometrical over smoothing, but the
required complex data structures would be difficult to handle on the
GPU, add memory overheads and require pre-processing steps. In-
teractive performances may be degraded up to an unacceptable level
too. As a consequence, the rendering of dynamic data sets would
be severely impaired. Nevertheless, as explained in section 4.3, if
direct use of heightfield data is not required, implementingsuch
mechanism would still be possible. However, even if such multi-
resolution technique would be included, no major performance in-
crease would be achieved since we use an image based rendering
method for the faraway areas. Indeed, rendering complexityde-
pends on the number of rendered pixels, and is not directly linked
to data size (except for hardware constraints like memory access
latency, for example). Yet, some aliasing artifacts resulting from
the mismatched data/screen resolution would certainly be alleviated
due to surface smoothing.

HA : 2048×2048 MB : 4096×4096 SP : 4096×4096

Figure 3: Heightfields used for error evaluation: high amplitude
relief (HA), Mont Blanc terrain (MB) and spectrogram (SP).

4 ADAPTIVE MECHANISM

In this section, we describe our heuristic to automaticallychoose
between the two rendering techniques. Since ray-casting does not
guarantee an exact intersection between rays and the heightfield
surface, it might introduce some visual artifacts. Hence, our heuris-
tic must also take into account such artifacts to make them invisible
or to minimize them. In the next subsection, we first study andeval-
uate the rendering errors introduced by ray-casting. Basedon this
study, we then propose an efficient heuristic.

4.1 Ray-casting Error Analysis

Our motivation is to provide a measure that allows us to evalu-
ate the error induced by ray-casting compared to an accurate, full-
resolution, mesh rendering with respect to various parameters. The
following parameters are known to be involved in the ray-casting
rendering quality: viewing distance and angle, terrain characteris-
tics and heightfield intersection lookup precision.

As error measure, we propose to use the distance, along the view-
ing ray, between the accurate reference mesh surface and thesur-
face rendered using the ray-casting algorithm. Such an error mea-
sure is well suited to evaluate ray-casting errors and provides an
intuitive interpretation of the rendering accuracy. Indeed, a value
of zero means no error at all, compared to the actual mesh rendered
terrain, while the value can become infinite if parts are completely
missed. We conducted many tests and measurements on two ex-
treme ray-casting cases, with varying view angles (from grazing to
orthogonal) and varying view distances: a very low quality case,
using only 5 linear steps and 2 binary refinement steps and a high
precision case, using 64 linear steps and 25 binary refinement steps.

We also evaluated the error on different data sets: a standard
terrain data set (the Mont Blanc, denoted MB), a heightfield from
a spectrogram (SP) and a synthetic data set (HA) with high am-
plitude reliefs (see Figure 3). The spectrogram data set is chosen
for its high frequency details to magnify the rendering technique’s
ability to preserve small-scale terrain details. Moreoverit features
a strong anisotropy with many parallel narrow valleys and ridges.
The synthetic high amplitude data set is used to characterize the
silhouette preservation of the rendering method.

To evaluate the overall precision of the rendering, a peak signal-
to-noise ratio (PSNR) error is computed, for each frame, as follows:

E = 10· log10

(

R2

MSE

)

where the mean squared measured error is derived from the errorsei
of all rendered pixels in frameF (with #F , the number of rendered
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Figure 4: Geometric error of low precision ray-casting versus ref-
erence mesh, on spectrogram data set (SP). Error is relativeto the
terrain length. PSNR error for this capture is 51.87 dB. 69.5% of
the pixels have an error less than 1% of the terrain length; 80% less
than 5% terrain length and 89.5% less than 10% terrain length.
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Figure 5: PSNR measured for two ray-casting precisions (high pre-
cision in red, low precision in blue) on three data sets with varying
view-angles and distances to the viewer.

pixels):

MSE =
1

#F ∑
i∈F

e2
i

and correlated to the terrain bounding box typical lengthR.
Figure 4 shows an example of the spatial error distribution of

low precision ray-casting for a grazing view angle. As visible on
this figure, it results in large errors, since some intersections are
missed at crest lines. Consequently, relief silhouettes are altered.
These artifacts are reduced to become negligible when ray-casting
precision increases.

As we can see on Figure 5, the major influence on ray-casting
quality is the viewing angle. If the terrain is smooth, the error is
almost linearly dependent on this angle. Conversely, the distance
does not introduce rendering artifacts: the rendering quality is quite
constant depending on the distance. The relief influence becomes
important when the relief amplitude is high, as it is the casewith
our high amplitude data set: errors are always present even with a
near orthogonal view angle.

From our experiments, we see that the size of the terrain doesnot
have a direct impact concerning the rendering performance,which
is presented in Table 1. This is related to the fact that ray-casting is

Data set
High

amplitude
Mont
Blanc

Spectro-
gram

(Data size) (20482) (40962) (40962)
Low precision RC 430 360 238
High precision RC 76 47 36

Full mesh rendering 26 6.9 7

Table 1: Rendering speed (in Hz) for a grazing view angle on a
viewport of 1024×768.

mainly dependent on the number of pixels that are rendered. Ren-
dering performance is also directly linked to the precisionof the
ray/heightfield intersection lookup steps. As shown on Figure 4, if
the precision is not sufficient, rendering artifacts becomestrongly
visible in the foreground. These artifacts are also more pronounced
when the viewing position is moving, since it results in flickering
effects. As a consequence, low precision ray-casting must be used
carefully, and a good balance must be determined between quality
and performance.

4.2 Heuristic
Based on our observations, we now introduce a heuristic to choose
between the two rendering techniques in a way that enhances the
rendering quality without sacrificing the rendering performance.

As we showed previously, ray-casting can achieve high render-
ing quality or high rendering performance depending on the inter-
section lookup precision. Moreover mesh rendering with a num-
ber of triangles matching the full resolution of the data offers the
most accurate rendering. At close range, mesh rendering is also the
most efficient rendering method since a single triangle projects on
numerous pixels, actual performance depending on graphicshard-
ware. Taking this fact into account, we propose to use a threshold
based on terrain screen coverage to choose between mesh render-
ing and ray-casting. Thus, we define the thresholdT according to
hardware capabilities: when mesh rendering becomes more effi-
cient than ray-casting, the heuristic should select mesh rendering.
Intuitively, this threshold should be compared to the triangle’s area
on screen.

For each cell, the associated box is projected onto the screen.
Then, its footprint area is approximated by computing, in screen
space, the areaA of the bounding rectangle of the 8 corners of the
box. This value summarizes the distance from the camera and the
maximum relief variation (represented with the minimum andmax-
imum height values) inside the cell. In fact, since we are interested
in the triangles footprint on screen,A is divided by the number of
terrain samplesS contained within the cell (thusS = n2 wheren
is equal to the number of samples on the cell width). IfA/S is
greater than the threshold parameterT , then mesh rendering should
be used:

{

A/S > T ⇒ mesh rendering
A/S ≤ T ⇒ ray-casting rendering

If ray-casting is chosen for the current cell, then its precision must
be further determined.

To improve rendering performance, we want to use the least pos-
sible ray-marching steps. But, as described in Section 4.1,ray-
casting introduces some artifacts at grazing view angles, which we
want to avoid, as much as possible. As previously shown, height
amplitude of a terrain cell is also an important parameter: if this
cell represents an important part of the view, ray-casting precision
should be increased. In addition, the ray-casting absoluteprecision
can be decreased according to the distance without affecting the
rendering quality.

Thus, we incorporate the viewing angle, the distance between
camera and cell, and the height amplitude of the cell in our heuris-
tic. For a given box, we propose the following formula to compute



the level-of-precision:

L =
min(db,dmax)

dmax
− (h ·cosθ )

whereh is the height of the box (elevations of the heightfield are
supposed to be contained between 0 and 1),θ is the angle between
the viewing ray and the vertical at the center of the box anddb is
the distance between the center of the box and the camera. The
valuedmax is computed withdmax = k · dBB, wheredBB represents
the maximal possible value fordb, which corresponds to the diago-
nal length of the terrain bounding box in world space. The heuristic
is decomposed into two terms. The first one controls the variations
due to the viewing distance. The second one controls the variations
related to the viewing aspect (i.e. the viewing angle compared to
the heightfield base plane). The heuristic depends on a parame-
ter k which includes a terrain size normalization factor and which
finally modulates levels-of-precisions distribution according to the
distance between the cell and the camera.

Finally, L values are evenly distributed amongst the ray-
casting levels-of-precisions,L = 0 representing the highest level-
of-precision.

4.3 Implementation notes
To test our method, we implemented it using OpenGL on a standard
PC. All measures were performed using a NVIDIA GeForce GTX
280 graphics card with 1 GB of graphical memory.

For each cell, only heightfield data (elevation and normal) and
the elevation bounds are required. These data are stored in two tex-
tures whose layout match the terrain one. This layout was chosen
to keep our implementation simple but this prevents us from han-
dling extremely large data sets, as our implementation onlyallows
heightfields which entirely fit into GPU memory to be rendered.
Nevertheless, since the data are accessed cell by cell (for visible
cells) during rendering, it would be possible to further adda stream-
ing mechanism to dynamically upload required data into the GPU
memory on demand.

As previously described in section 3, in order to allow dynamic
heightfields rendering, no pre-processing is performed. Conse-
quently, no optimization technique for ray-casting, like empty space
skipping mechanisms [2, 19, 23], is included. Yet, it is conceivable
to integrate such kind of techniques. However, memory footprint
would be increased and handling dynamic heightfields would be
restricted, or even become impossible.

4.4 Heuristic parameters analysis
As the heuristic defined previously is based on several parameters,
the influence of these parameters is now analyzed.

The cell size has an influence on the rendering performance. We
obtain the highest frame rates for box sizes varying between502

and 1282 samples, as shown on Figure 6. In fact, when box size be-
comes too small, rendering performance decreases: too manycells
must be rendered using ray-casting which involves increasing over-
draw: some pixels are drawn multiple times in neighboring boxes.
When box size increases, the meshed surface becomes more im-
portant and slower to render (when many cells are rendered using
this algorithm). Moreover, a higher overdraw also occurs during
the ray-casting pass.

Table 2 shows the influence of the number of different ray-
casting levels-of-precision. To measure these rendering timings,
we use the Puget Sound data set (4096×4096 px) with a box size
of 75×75 pixels. The scene is rendered using a varying number
of levels-of-precision: the number of steps ranges from 64 to 6 for
linear search, and from 50 to 5 for binary search. This parameter
only affects ray-casting, so the mesh rendering timing is identical
for all configurations. Moreover, the time elapsed to evaluate the
level-of-precision heuristic is constant since the computation is the
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Figure 6: Influence of cell size on rendering timing for the Mont-
Blanc data set (MB).

# LOP Heuristic
evaluation

Mesh
rendering

Ray-
casting

Total
rendering

2 0.38 2.38 10.80 13.61
4 0.42 2.33 12.13 14.95
6 0.38 2.33 13.04 15.80
8 0.38 2.33 13.83 16.60
10 0.38 2.35 14.66 17.45

Table 2: Influence of the number of levels-of-precisions (LOP) on
the rendering performances. Timings are in ms.

same. On the contrary, the ray-casting rendering pass timing in-
creases with the number of levels-of-precision. This overhead can-
not clearly be traced back to a specific part of the rendering,but
might be the consequence of increasing shader context switching.
Experimental results show that rendering quality does not signifi-
cantly increase along with the number of levels-of-precision since
the lowest and highest precision levels both stay the same. These
results also show that four levels-of-precisions provide the best bal-
ance between rendering speed and quality.

Our heuristic uses different parameters to allow an adaptation to
the data and allows a user to set the trade-off between rendering pre-
cision and speed. The parameterT , used to define whether or not
a mesh is used, mainly selects the foreground area of the height-
field, and allows one to improve the rendering quality for these
area: whenT increases, the mesh coverage of the heightfield be-
comes more important. The parameterk, used to adapt the heuristic
to the relief characteristics, acts on the precision distribution of the
ray-casting. Ifk is low, more parts of the heightfield are rendered
using a low level-of-precision, so rendering error increases.

Figure 7 shows the influence of these parameters on the ren-
dering speed and quality. Quality is expressed with PSNR error
and terrain silhouette rendering precision (wrong pixels). This fig-
ure shows values measured on several frames of a fly-through over
two different data sets. As we can see, the rendering qualityis
strongly linked to the parameterk which adapts the ray-casting dis-
tribution. Indeed, when using a lowk parameter, more cells are
rendered using a low-precision ray-casting, so the rendering quality
is decreased but the rendering speed is increased. With regard to
the parameterT , its impact on rendering quality and speed is less
important thank. The rendering speed is slightly lower when this
parameter increases but the quality is not significantly enhanced.

However, we can notice, on very high frequencies data sets like
the spectrogram data set, that ray-casting misses more pixels, espe-
cially for grazing view angles. This is confirmed on Figure 7 with
a higher proportion of wrong pixels on some frames.

5 RESULTS AND COMPARISON WITH GEOMETRY CLIPMAPS

Some rendering results and a thorough comparison with geometry
clipmaps [14] are now presented. The ability of our method tohan-
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dle dynamic heightfields is also presented.

5.1 Rendering quality and performances

Figure 1 shows a rendering result for the Como Lake data set of
resolution 4096× 4096 px. The colors highlight the distribution
of the levels-of-precision of the ray-casting algorithm. It clearly
shows that our heuristic is guided by relief features to define the
precision of the ray-casting. We usedT = 70 andk = 1.30 for a
cell size of 1282 samples and four levels-of-precision (linear/binary
steps): 55/25, 32/15, 16/10, 8/5. Using this configuration and a
viewport of 1024×768 px, a frame rate between 40 and 150 Hz is
obtained, depending on the viewing position. When the same data
are rendered using a full resolution mesh, with the same viewing
conditions, the frame rate varies between 5 Hz and 9 Hz.

Compared to a reference mesh rendering, on Figures 8 and 9, our
rendering method well preserves small reliefs and, consequently,
does not smooth reliefs with high frequencies details.

A major drawback using hybrid techniques is popping artifacts
which occur at the transitions between different renderingtech-
niques and levels-of-precision. However, with our method,given
sufficient precision on ray-casting no popping artifacts are visible.
Our method does not introduce cracks between cells renderedusing
different levels-of-precisions. All cells rendered as a mesh use the
same full resolution terrain samples thus, no T-junction isever cre-
ated at the boundary between two meshed cells. At mesh-ray traced
boundaries, no crack is produced either because ray tracingoperates
on the full resolution data too: entry point of the ray in the proxy

box is always coherent regarding to the mesh rendered in the neigh-
boring cells because both use the same sampling of the terrain and
the same linear interpolation between samples. It is an advantage
compared to level-of-details mechanisms which combine meshes
with different resolutions: they frequently need to deal with cracks
at the boundary of terrain areas rendered using different resolutions
and rely to complex re-meshing systems or adaptive tessellations.

Since no geometrical level-of-details mechanism is used, our
method does not intrinsically mitigate aliasing artifacts. However,
experimental results show that artifacts are limited to theless accu-
rate levels-of-precisions. In fact, cells rendered with mesh or with a
high ray-casting level-of-precisions do not suffer from aliasing. As
the full mesh is used for the closest part of the terrain, suitable pa-
rameters can keep the triangles big enough to avoid these artifacts.
Still, in the background, minor aliasing cannot be easily alleviated
because no antialiasing mechanism is used.

5.2 Comparison with clipmaps

We compare our method to the GPU handled geometry clipmaps
[1], with the following parameters:n = 511, 11 levels-of-details,
and an alpha transition ofn/10. Since the clipmaps only use a
distance based level-of-details scheme, small relief features are over
smoothed, as we can see on Figure 9. The error is mainly located on
the crest lines. This is also confirmed on the top of Figure 7 where
we can see better PSNR error values for our rendering technique.
To enhance the over smoothing of the geometry clipmaps and its
effect on the PSNR measure, we also use more degraded settings



Figure 8: Rendering comparison between our method (left) and a
reference mesh rendering (right).

(a) k = 1.0, T = 100,PSNR ≈ 68 (b) k = 1.5, T = 100,PSNR ≈ 78

(c) Geometry clipmapsn = 511, 11
LOD, PSNR ≈ 59

Figure 9: Rendering quality comparison between our method (a)
and (b) for varyingk parameter values and the geometry clipmaps
(c). Excerpt from Figure 8.

for the geometry clipmaps (n = 127 and 13 levels-of-details).
Since our heuristic takes into account relief features, it better

preserves them. For data with high relief amplitudes or highrelief
frequencies, silhouette errors are also mostly avoided with our tech-
nique, while they remain more present with geometry clipmaps, as
illustrated on Figure 9. In fact, compared to a reference mesh ren-
dering (Figure 8), some pixels are not rendered and some others
are rendered at a wrong place, especially on crest lines. These vi-
sual observations are corroborated by the numerical PSNR error, as
shown on the top of Figure 7. The bottom of the Figure 7 also quan-
tifies this phenomena. As we can see on this figure, our method,
depending on the heuristic parameters, minimizes these rendering
errors.

Several experiments on various terrain data sets have shownthat
our method provides better results on data sets with high frequen-
cies details: geometry is well preserved without any smoothing of
the small details, maintaining real time rendering frame rates.

5.3 Dynamic heightfields

One key point of our method is its straightforward handling of dy-
namic heightfields. Our method does not introduce any dependen-
cies between cells for the rendering. As a consequence, local defor-
mations of the data remain local to the data and do not propagate
to the whole data. Global modifications are also possible andcould
be performed in real time, depending on the data set size and the
complexity of the deformation process. No height amplitudecon-

Figure 10: On top and middle, Puget Sound data set (4096×4096
px) before (left) and after (right) interactive erosion (≈ 35 - 45 Hz)
and editing. On bottom, Puget Sound data set with wave simulation
process (≈ 35 - 45 Hz).
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Figure 11: Speed rendering comparison between our method, our
method with an erosion process and our method during a wave sim-
ulation on the Puget Sound terrain. For both erosion and wavesim-
ulations, height data are updated every 100 ms.

straints are applied to the deformations since the elevations remain
between 0 and 1.

As examples, we have implemented a real-time erosion mech-
anism [17], an interactive terrain stamping and a simple ocean
wave simulation. For the erosion mechanism and wave simulation,
heightfields are entirely updated. For the terrain stamping, only the
modified area of the heightfield is updated. Results are shownon
Figure 10.

As shown on Figure 11, we are able to maintain real-time perfor-
mances while the erosion process or the wave simulation are run:
only the cell minimum and maximum altitudes are retained over the
regular erosion process. For the interactive terrain stamping, only
the minimum and maximum altitudes of the modified cells need to
be updated.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced a new hybrid method designed
to render heightfield data sets with a good balance between speed,
quality and flexibility, the latter allowing for terrains tobe dynamic.



We combined two different rendering methods: a mesh rendering
and a ray-casting algorithm using different levels-of-precision. To
combine these methods, we proposed a heuristic that modulates the
rendering precision according to the distance, viewing angle and re-
lief features in order to maintain high rendering performance with-
out visual quality loss. This heuristic also takes into account a user-
given quality factor to balance between triangle projections where
no error is committed and ray-based intersections.

Our rendering process requires neither complex pre-processing
steps nor sophisticated accelerating data structures. It directly uses
raw heightfield data. This allows us to edit terrains and to apply
a mechanism to update the whole data like an erosion simulation
process or a simple wave simulation, both in real-time. Compared
to other terrain rendering techniques, our method is simpleto use
and easily allow dynamic heightfield data sets.

The rendering quality we obtain is good compared to standard
terrain rendering methods, such as geometry clipmaps, since we
use mesh and high precision ray-casting for the most salientrelief
features. Crest lines and small features of the relief at thehori-
zon are also well preserved. However, as previous research has
already shown, ray-casting remains globally slower than adaptive
mesh based rendering, which hinders one to obtain high framerates.
This can be considered as the main counterpart of improved flexi-
bility and rendering quality. But flexibility and quality ofthe ren-
dering is important for some kinds of applications like scientific
data visualization or geomatic applications. Finally, ourmethod
provides better results than standard methods to render relief de-
tails with high frequencies maintaining a real-time frame rate. The
cell division of the terrain and the independence between the cells
provide a high degree of flexibility of our method. As a conse-
quence, our method allows one to easily select parts of the terrains
which are rendered or not. This might prove useful for applications
which should render different parts of the terrain using different
algorithms (to handle non-heightfield structures of a terrain, for ex-
ample).

For the moment, no streaming mechanism is implemented to
handle very large data sets. But since we use a cell-subdivision of
the height data, the rendering of large data sets seems possible, pro-
vided we define an adequate loading and caching strategy, similarly
to Dick et al. [5].

Finally, in our future works, we also would like to study aliasing
problems alongside some form of simple and lightweight level-of-
details mechanisms. Indeed, heightfields rendering algorithms gen-
erally suffer from aliasing, especially in faraway areas. We believe
a ray-casting algorithm is inherently well suited to address accu-
rately aliasing, for instance using adaptive over-sampling process.
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