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The commonly applied surface temperature–vegetation index (Ts–VI) triangle method is used to estimate
regional evapotranspiration (ET) in arid and semi-arid regions. A practical algorithm based on the Ts–VI
triangle method is developed to determine quantitatively the dry and wet edges of this triangle space. First,
the Ts–VI triangle method is reviewed. Assumptions involved in this method are highlighted, and
advantages, disadvantages and applicability are discussed. Then, an experimental use of the Ts–VI triangle
method is developed and applied to several MODIS/TERRA datasets acquired during the Heihe Field
Experiment from May 20th to August 21st, 2008. The sensible heat fluxes retrieved using MODIS data from a
grassland located in the middle reach of Heihe river basin, Northwest China, are in good agreement with
those measured from a Large Aperture Scintillometer (LAS). The Root Mean Square Error of this comparison
is 25.07 W/m2. It is shown that determination of dry and wet edges using the proposed algorithm is accurate
enough at least in most cases of our study for the estimates of regional surface ET.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Accurate estimates of spatially averaged evapotranspiration (ET)
are of crucial importance in disciplines of hydrology, meteorology and
agriculture, especially in arid and semi-arid areas where water
deficiency is becoming a major constraint on economic welfare and
sustainable development. Though direct measurements of turbulent
heat fluxes representative of scales of hundreds and thousands of
meters can be conducted by the use of either the radiosonde-based
vertical profiles of regionally averaged atmospheric variables in the
planetary boundary layer or the flight-path averaged turbulence
statistics measured with a turbulence measurement instrument
onboard an aircraft (Asanuma & Iemoto, 2007), these direct
measurements can only be conducted in large scale field programs
occasionally due to the high cost and discontinuity of these
measurements. Remote sensing technology can provide land surface
parameters such as surface temperature, albedo and vegetation
indices, etc., which are indispensable to remotely sensed ET models
for estimating the area averaged turbulent heat fluxes at regional
scale. It is recognized as the only viable means to map regional, meso-

and macro-scale patterns of ET at the earth's surface in a globally
consistent and economically feasible manner.

Several remotely sensed ET models with varying complexity have
been developed to map turbulent heat fluxes at various spatial scales
ranging from small “point” to large “continental” scale. Inputs to
remote sensing estimates of ET generally consist of surface temper-
ature retrieved from thermal infrared channels, albedo and vegetation
indices estimated from visible and near infrared spectral bands and
ground-basedmeteorological measurements. These ETmodelsmainly
include the simplified empirical method (Jackson et al., 1977), surface
energy balance based single- and dual-source models (Hatfield, 1983;
Norman et al., 1995), spatial contexture information based surface
temperature–vegetation indices triangular and trapezoidal methods
(Jiang & Islam, 1999; Moran et al., 1994) and data assimilation
techniques (Boni et al., 2001). Overviews of these models and
methods have been provided by a number of authors since the
1990s (Courault et al., 2005; Glenn et al., 2007; Kairu, 1991; Kalma
et al., 2008; Kustas & Norman, 1996; Li et al., 2009). Although great
progress has been made on the regional remotely sensed estimate of
ET with models incorporating land surface parameters retrieved
quantitatively from satellite remote sensing data in the past more
than 30 years, there are several related problems that have not yet
been solved properly. On one hand, for lack of the validation ET data at
large scale, particularly over heterogeneous surfaces with complex
geographic terrains and partial vegetative covers, all developed ET
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models or methods have not been rigorously validated and conse-
quently cannot be used in confidence. On the other hand, due to the
extra difficulty presented or the lack of the feasible methods to get the
spatial representativeness of ground-based measurements for het-
erogeneous domain at large scale, such as near surface air temper-
ature, wind speed, vapor pressure deficit and vegetation height, etc.
from the limited observation networks on the Earth, most of the
currently commonly applied remotely sensed ET models cannot be
used operationally to map ET at large scale. In order to overcome the
latter problem, attempts have been made to develop a parameteri-
zation of regional ET with only satellite derived surface parameters,
such as the so-called surface temperature–vegetation index (Ts–VI)
triangle method developed by Jiang and Islam (1999, 2001) and
improved by Jiang and Islam (2003). The cross-sensor-platform
applicability of the Ts–VI triangle method between MODIS and
AVHRR data was verified by Venturini et al. (2004) and Batra et al.
(2006). This type of method relies on the triangular shape formed by
the scatter plot of surface temperature (Ts, or temperature difference)
versus vegetation index (VI, such as Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), and fractional
vegetation cover (Fr)) under a full range of vegetation cover and soil
moisture availability within the interesting study region to estimate
evaporative fraction (EF) and ET at satellite pixel resolution. The
success of Ts–VI triangle method on the estimation of EF and ET
depends mainly on the correct choice of the dry and wet edges in the
Ts–VI triangle space. In the previous studies, the wet edge is generally
identified by using the lowest observed clear pixel surface temper-
ature in the image scene (Jiang & Islam, 2001) or air temperature
(Jiang & Islam, 2003), or the average remotely sensed inland water
body temperature (Jiang et al., 2009) whereas the dry edge
determination cannot automatically filter the outliers and spurious
dry points to guarantee the closer approaching of the observed edge
to the theoretical true dry edge.

The objectives of this paper are twofold: (1) to develop an
algorithm to determine quantitatively the dry and wet edges for the
Ts–VI triangular space in arid and semi-arid areaswherewet pixels are
not generally easily identified, and (2) to validate with the in-situ ET
measurements made by the Large Aperture Scintillometer (LAS) the
ET derived from MODIS/TERRA products using the developed
algorithm. Section 2 recalls the principle of the Ts–VI triangle method
and highlights the assumptions involved in the methodological
development and the advantages and disadvantages of the Ts–VI
method. The implementation and application of the proposed
algorithm to MODIS data are subsequently given in this section.
Section 3 describes the study region and data used in the present
study and gives a preliminary validation of satellite derived sensible
heat flux with the field measurements made by the LAS. Finally, the
conclusion is given in Section 4.

2. Methodology

2.1. Review of Ts–VI method

Spatial contextual information of Ts versus VI triangle relationship,
first proposed by Goward et al. (1985), has been applied successfully
to study soil moisture water content, land use and land cover change
and drought monitoring (Carlson et al., 1995; Hassan et al., 2007;
Lambin and Ehrlich, 1996; Nemani et al., 1993; Price, 1990; Sun &
Kafatos, 2007; Sun et al., 2008). Such a triangle is characterized by two
physical bounds: the upper decreasing dry and lower nearly
horizontal wet edges (see Fig. 1 as an example). These edges
respectively represent two limiting cases of soil moisture and
evaporative fraction for each VI value (i.e., the unavailability of soil
moisture at the dry edge and the potential ET at the wet edge).

Ts–VI triangle (see Fig. 1) method applied in this paper is
originated from the parameterization of Jiang and Islam (1999), in

which a simplified Priestley–Taylor formulation (Priestley & Taylor,
1972) with fully remotely sensed data is utilized to estimate regional
ET and EF by interpreting the scatter plot constructed from remotely
sensed Ts and VI under conditions of full ranges of soil moisture
availability and vegetation cover. This approach is based on an exten-
sion of Priestley–Taylor's equation and the existence of physically
meaningful relationship between evaporative fraction and remotely
detectable surface characteristic parameters (Ts, NDVI, soil moisture,
vegetation fraction). The mathematical expression of latent heat flux
(LE) is taken as follows (Jiang & Islam, 1999):

LE = ϕ ðRn−GÞ Δ
Δ + γ

� �
ð1Þ

where ϕ is a combined-effect parameter which accounts for
aerodynamic resistance (dimensionless), Rn is surface net radiation
(W/m2), G is soil heat flux (W/m2), Δ is slope of saturated vapor
pressure versus air temperature (kPa/°C), γ is Psychrometric constant
(kPa/°C).

Parameter ϕ is derived using a two-step interpolation scheme from
the dry andwet edges in the Ts–VI triangular space. Detailed description
will be given in Section 2.3. As shown by Jiang and Islam (1999), Jiang
et al. (2004) andWang et al. (2006), the sensitivity of Δ/(Δ+γ) on the
variation of temperature is very small, air temperature (Ta) required in
Eq. (1) to calculate Δ/(Δ+γ) can be obtained either by a linear
regression between Ts and Ts–Ta or by using mean surface temperature
or meanwater surface temperature as a surrogate (Jiang & Islam, 1999;
Venturini et al., 2004). In this work, taking into account the small
sensitivity of Δ/(Δ+γ) and the correlation of Ts with air temperature,
remotely sensed Ts will be used to estimate the parameter Δ instead of
the use of air temperature.

It should be noted that all quantities involved in the right hand
side of Eq. (1) can be derived from remotely sensed data alone and
according to the definition of EF, EF can be directly estimated from
Eq. (1) as:

EF = ϕ
Δ

Δ + γ
: ð2Þ

Although parameter ϕ in Eq. (1) looks apparently the same as α in
Priestley–Taylor's equation, there is a distinct difference in the
physical meaning between these two parameters. In Priestley–
Taylor's equation, α is generally interpreted as the ratio of actual

Fig. 1. Schematic diagram of the conceptual surface temperature–vegetation fraction
(Ts–Fr) triangular space (upper and lower blue solid lines respectively represent
observed dry and wet edges from remotely sensed data; upper and lower red solid lines
respectively represent true dry edge with water stressed conditions in root zone soil
water for different vegetation covers and true wet edge with sufficient water
conditions).
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evaporation to the equilibrium evaporation and a series of paper has
demonstrated this parameter with a good approximate to be 1.26
(Crago & Brutsaert, 1992; Jiang & Islam, 2001). Priestley–Taylor's
equation is generally applicable for wet surfaces whereas Eq. (1) holds
true for a wide range of surface evaporative conditions with ϕ varying
from 0 to (Δ+γ)/Δ when significant advection and convection are
absent. Jiang and Islam (1999) have found the upper bound of derived
ϕ (corresponding to the wet edge in the Ts–VI triangle space) for each
NDVI value is very closed to 1.26.

Several modified versions of Ts–VI triangle method have been
applied with remote sensing data derived from MODIS and AVHRR
sensors to estimate the regional EF and ET mainly over the Southern
Great Plain (SGP) in the United States. In the work of Stisen et al.
(2008), MSG-SEVIRI derived temperature difference dTs was plotted
against NDVI to establish the triangular feature space, in which the
minimum ϕ along the dry edge was interpolated non-linearly with
NDVI between global minima and maxima while ϕ value for
intermediate pixels was interpolated linearly between minimum
and maximum ϕ within each NDVI interval. Carlson (2007) showed
how temporal trajectories of points described the land use change in a
universal (scaled Ts–VI) triangle. Wang et al. (2006) combined
advantages of thermal inertial method and Ts–NDVI spatial variation
method to develop a modified day–night Ts difference–NDVI triangle
using data from MODIS Terra and Aqua land surface products to
estimate the regional EF and analysis was performed with data
collected from energy balance Bowen ratio system at 11 enhanced
facilities over SGP from April 2001 to May 2005. Batra et al. (2006),
Venturini et al. (2004) and Jiang and Islam (2001, 2003) have
respectively established their own Ts–NDVI triangles to demonstrate
the applicability and operationality of this simple scheme in the
estimation of regional ET and EF over larger areas.

Assumptions involved in the Ts–VI triangle method are that
1) variations in surface temperature for given vegetation index (VI)
are primarily caused not by differences in the atmospheric forcing but
the different soil moisture availabilities, and 2) sensitivity of Ts to soil
and canopy differs and canopy temperature is insensitive to soil
moisture change at surface/deep layer.

Advantages of Ts–VI triangle method over the residual method of
surface energy balance for ET estimation are that 1) absolute high
accuracy in remotely Ts retrieval and atmospheric correction are not
indispensable, 2) complex parameterization of aerodynamic resis-
tance and uncertainty originated from replacement of aerodynamic
temperature by remotely sensed Ts is bypassed, 3) no ground-based
near surface measurements are needed other than remotely sensed Ts
and VI, 4) a direct calculation of EF, defined as the ratio of latent heat
flux to surface available energy, can be obtained without resort to
surface energy balance, and 5) estimations of EF and Rn are
independent from each other by this method. Therefore, the overall
errors in ET can be traced back to EF and Rn separately. There are some
other methods making the estimation of EF and Rn dependent on each
other (among others, Bastiaanssen (2000); Norman et al. (1995)),
thus making it impossible to trace errors separately. Limitations of
Ts–VI triangle mainly lie in a bit subjective determination of both dry
and wet edges and a large number of pixels required over a flat area
with a wide range of soil moisture and fractional vegetation cover.

2.2. Automatic edges determination algorithm for the Ts–VI triangle

Taking into account that NDVI is just a surface greenness parameter
and dependent on spatial resolution of remote sensors (Price, 1990), the
commonly employed NDVI in the construction of Ts–VI triangle space
will be replaced in this paper by the fraction of vegetation (Fr) which
seems to bemore representative of the relative proportionality between
soil and vegetation within the pixel. A theoretical interpretation of the
conceptual Ts–Fr triangle (trapezoid) is given in Fig. 1. Overall, the dry
edge and wet edge form two physical limits of the Ts–Fr triangle

(trapezoid). For a given Fr (Fri), surface temperature (Ts) increases
progressively as a result ofwater stress in the surface soil fromminimum
value (Tsmin,i) at wet edge to maximum value (Tsmax,i) at dry edge
whereas EF decreases from maximum (EFmax,i) to minimum (EFmin,i)
values correspondingly. Specifically, pixels at the (true) wet edge are
regarded toevaporate (transpire)potentiallywithEF=EFmax,i=1while
at (true) dry edge ETmainly comes from the transpiration of vegetation
from the root zone water. EF at dry edge (EFmin,i) varies from 0 at bare
soil to 1 at full vegetation coverwhen root zone soilwater is not stressed.
Jiang and Islam (2003) assumed a linear variation of EFwith Fr at the dry
edge between (EFmin,0=0, Fr=0) and (EFmin,1=1, Fr=1). Stisen et al.
(2008) proposed a quadratic function of NDVI for determination ofϕmin,i

at dry edge, equivalent to a linear function between EF and Fr with
consideration of small sensitivity ofΔ/(Δ+γ) to air temperature. Under
water stress conditions in the root zone soil water, surface temperature
at dry edge for a (partially or fully) vegetated surfacewill be higher. Jiang
and Islam(2003) introduced a correction parameterη (varying from0 to
1) to account for the water stress conditions at dry edge where EF is
equal to ηEFmin,i. Under extreme circumstances, η=1 means no water
stress in the root zone soil water while η=0 indicates no evaporation at
all at dry edge even for the vegetated surface, which seems to violate the
observations and does not make sense as to the physiological growth of
the green vegetation. Although the exact relationship between EFmin,i

(ϕmin,i) and Fr has not been explored explicitly, it appears that EFmin,i

(ϕmin,i) as a linear function of Fr can give satisfactory results when no
water stress conditions in the root zone soil water occur at dry edge. As
for wet edge determination, previous works (Carlson, 2007; Jiang &
Islam, 1999) have recommended taking the surface temperature of a
water body and/or a well-irrigated agricultural field as the temperature
of wet edge with potential ET. In addition, for a given Fr, Jiang et al.
(2004) theoretically verified the linear variation of EF with surface
temperature (or temperature difference) from the bulk transfer
equation for sensible heat flux and deduced the error bounds of EF in
the Ts–VI triangle in a semi-empirical manner.

To estimate pixel by pixel ET and EF using Eqs. (1) and (2), both dry
and wet edges in the Ts–Fr space have to be first determined. In arid and
semi-arid areas, for a given vegetation cover, spatial pixels with high
surface temperature and low EF are more readily detectable by satellite
remote sensors than potentially evaporating pixels (such as inland water
body surface, fully vegetated surface) which may hardly exist. For these
areas, the observed dry edge from the satellite remote sensors can
represent the true dry edge with water stress correction parameter η=1
whereas surface temperatures at observed wet edge may be higher than
those at truewet edge (sufficientwater conditions). Therefore, in arid and
semi-arid regions, directly applying the observedwet edge as the truewet
edge in Ts–VI triangle space will result in overestimates of EF and ET. It
should be noted that even if pixels under different vegetation cover
conditions evaporate (transpire) potentially for given similar atmospheric
forcing, there will be temperature difference for these pixels (i.e. surface
temperature of a bare soil with potential evaporation may be lower than
that of fully vegetation cover pixelwithpotential transpiration).However,
this difference should be small and is relatively unimportant in the
estimates of EF and ET. Assuming the wet edge to be a constant
temperature regardless of Fr and equal to the temperature of dry edge at
Fr=1 in theTs–Fr space should not incur large error in the resultant EF and
ET estimates as demonstrated in Section 3.

With the assumption that surface temperature at the dry edge is a
linear function of Fr and the true wet edge is a constant value in Ts–VI
triangle space, theoretically, the dry and wet edges can be both
determined once the highest surface temperature (EFmin,0=0) at Fr=0
and surface temperature at water body surface or fully vegetated surface
are known. However, these two land surface types cannot be easily
identified or may not exist at all in most arid and semi-arid areas, an
automatic and practical algorithm thereby needs to be developed to
determine the dry and wet edges in the triangular space for these areas
(see Fig. 2).
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In this paper, an iterative process is proposed to determine
automatically the two edges in the Ts–Fr triangle space (see Fig. 2).
This process can automatically filter the spurious dry points and is
more robustly resistant to the outliers. Below is the description of
each step in the proposed algorithm.

(i) Dividing the range of Fr in the Ts–Fr triangle space into M
intervals evenly (M≦20 is recommended) and then dividing
each interval into N subintervals (N≧5 is recommended);

(ii) For a given interval, finding and saving the maximum
temperature within each subinterval;

(iii) The average value (Taver) and standard deviation (δ) of the N
maximum surface temperatures for N subintervals of this given
interval are computed as an initial state.

(iv) If the maximum surface temperature of each subinterval of this
given interval is less than Taver–δ, this subinterval is discarded
in the following steps.

(v) The new average value (Taver) and standard deviation (δ) of the
maximum surface temperatures of the remaining subintervals
after step (iv) are recomputed.

(vi) If the number of remaining subintervals in the given interval is
greater than a given threshold value and δ is larger than a given
threshold value, go back to step (iv) and repeat the steps (iv)–
(vi), otherwise go to step (vii).

(vii) Taking Taver as the maximum surface temperature of this given
interval and going back to step (ii) until all the maximum
surface temperatures are found for all M intervals.

(viii) A linear regression between themaximum surface temperature
within each Fr interval and Fr value is performed and the Root
Mean Square Error (RMSE) is computed.

(ix) If the maximum surface temperature for a given interval is 2
times RMSE or more less than the temperature value in the
regressed line, this interval will be discarded and the program
will go back to step (viii) until the minimum number of
intervals is reached or no interval can be further discarded.

(x) A final linear regression is performed to obtain the dry edge:

Tmax;i = a + bFr; ð3Þ

with the two extreme points (Tmax,i=Tsmax at Fr=0 and Tmax,i=
Tsmin at Fr=1) depicted in Fig. 1, one gets:

a = Tsmax andb = Tsmin−Tsmax:

As mentioned above, this work assumes that the wet edge is the
line with a constant surface temperature which is equal to that of dry
edge at Fr=1, i.e.

Tmin;i = a + b = Tsmin:

2.3. Applications to MODIS data

To apply the above Ts–Fr triangle method to MODIS data, several
steps are needed to be performed as shown in Fig. 3. The input MODIS
data and products are MODIS land surface temperature/emissivity
products (MOD11) and NDVI (MOD13) from the Land Processes
Distributed Active Archive Center (LP DAAC) (http://lpdaac.usgs.gov/),
together with MODIS Calibrated Radiances (MOD021KM), MODIS
Geolocation (MOD03) and MODIS Precipitable Water (MOD05_L2)
products from the LAADS (Level 1 and Atmosphere Archive and
Distribution System) web (http://ladsweb.nascom.nasa.gov). The out-
put datasets consist of the derived Rn, G, EF and ET. Below is the
description of each step involved in the algorithm.

2.3.1. Downloading MODIS land surface temperature/emissivity and
NDVI products, MODIS Calibrated Radiances and Geolocation products,
as well as MODIS Atmospheric Precipitable Water product from the
MODIS data and products centers

In order to establish the Ts–Fr triangle space, MODIS land surface
temperature/emissivity product (MOD11A1 and MOD11_L2) and
NDVI product (MOD13A2) are needed to be first downloaded from
the Land Processes Distributed Active Archive Center (LP DAAC)
(https://lpdaac.usgs.gov/). In addition, MODIS Calibrated Radiances
(MOD021KM), Geolocation (MOD03) and Atmospheric Precipitable
Water (MOD05_L2) products are used to estimate the surface net
radiation Rn and they can be downloaded from the LAADS (Level 1
and Atmosphere Archive and Distribution System) web (http://
ladsweb.nascom.nasa.gov).

2.3.2. Screening out the pixels contaminated by cloud and also the pixels
with surface elevation far apart from the average of surface elevation in
the study area

Having successfully downloaded all MODIS data and products,
some preliminary processing are needed to be performed usingModis
Reprojection Tool (MRT) and MODIS Swath Reprojection Tool
(MRTSwath) so that all data and products are well georeferenced
and subset corresponding to the study area is easily accomplished. As
well known, the cloud affects significantly the satellite-derived Ts,
pixel contaminated by cloud in the study area are therefore screened

Fig. 2. Flow chart of the algorithm of our proposed dry edge determination in the Ts–Fr
triangular space.
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out. Moreover, as Ts change in the Ts–VI space is assumed to be
primarily caused by surface evaporative cooling effect instead of the
elevation variation, all pixels in the Ts–Fr triangle space should have
about the same surface elevation, thus pixels having much higher or
lower surface elevation with respect to the average of elevation in the
study area are also removed out.

It is worth noting that the subset selected should be as large as
possible so that the large ranges of both soil moisture availability and
vegetative coverage could be found in the study area.

2.3.3. Estimating the fraction of vegetation (Fr) for each pixel in the study
area

As stated in Section 2.2, to construct the Ts–VI triangle space, Fr is
used in this work to replace the NDVI. Pixel by pixel Fr is therefore
estimated from MODIS NDVI product using the formula proposed by
Carlson and Ripley (1997):

Fr =
NDVI−NDVImin

NDVImax−NDVImin

� �2
ð4Þ

where NDVImin and NDVImax are respectively the minimum NDVI
corresponding to bare soil and the maximum NDVI corresponding to
fully vegetated surface. They are assigned respectively to be 0.2 and
0.86 in this work as done by Prihodko and Goward (1997).

Noting that estimation of Fr using NDVI instead of using the newly
MODIS developed Enhanced Vegetation Index (EVI) product is due to
the fact that, to our knowledge, there is no formula available
nowadays to relate Fr to EVI.

2.3.4. Constructing the Ts–Fr triangle space
Knowing Ts and Fr, a plot of Ts against Fr (Ts represents the

ordinate axis and Fr represents the abscissa) for all remained pixels
after the step 2.3.2 in the study area is used to construct the Ts–Fr
triangle feature space bounded with an upper decreasing envelope
and a lower nearly horizontal envelope.

2.3.5. Determining automatically the dry and wet edges in the Ts–Fr
triangle space

After having plotted the pixels in our study region in two-
dimensional space (Fr, Ts), one needs to determine carefully the dry
and wet edges in this Ts–Fr space using the algorithm described in

Section 2.2 because accurate determination of these two edges has
direct impact on the accuracy of the derived EF and turbulent heat
fluxes.

2.3.6. Calculating pixel by pixel the combined-effect parameter ϕ
After having determined the dry and wet edges at step (2.3.5), as

depicted in Fig. 1, the value of ϕ corresponding to the driest bare soil
pixel (at the position Fr=0 and maximum surface temperature Tsmax

in the dry edge line) is set to 0 (denoted as ϕmin=0 at pixel (Fr=0,
Tsmax)) and the value of ϕ at the position Fr=1 and the minimum
surface temperature Tsmin in the dry edge line is set to 1.26 (denoted
as ϕmax=1.26 at (Fr=1, Tsmin)). A two-step linear interpolation is
then used to get the ϕ value for the pixel i (Fri,Tsi) in the Ts–Fr triangle
space — 1) determining ϕmin value in the dry edge line for the pixel i
(ϕmin,i) by assuming that ϕmin,i varies linearly with Fr between
ϕmin=0 at (Fr=0, Tsmax) and ϕmax=1.26 at (Fr=1, Tsmin), and
determining ϕmax value for the pixel i (ϕmax,i) in the wet edge line by
assuming that ϕmax,i is constant in the wet edge line, i.e. ϕmax,i=
ϕmax=1.26 as the wet edge line is defined as Ts=Tsmin; and
2) determining ϕ value for the pixel i, ϕi, by assuming that for given
Fr, ϕ increases linearly with the decrease of Ts between ϕmin,i and
ϕmax,i. According to the above-mentioned two-step interpolation
scheme (see Fig. 1), the lower limiting value of ϕ for any Fr (ϕmin,i) in
the dry edge can be first derived by a linear interpolation between
ϕmin=0 at Fr=0 and ϕmax=1.26 at Fr=1, namely:

ϕmin;i = 1:26Fr ð5Þ

then for the pixel (Fr, Tsi) in the Ts–Fr triangle, ϕ is once again assumed
to increase linearly with the decrease of Ts between ϕmin,i and ϕmax,i

for a given Fr, i.e.,

ϕ =
Tmax;i−Tsi

Tmax;i−Tmin;i
ðϕmax;i−ϕmin;iÞ + ϕmin;i ð6Þ

in which

Tmax;i = Tsmax + FrðTsmin−TsmaxÞ

Tmin;i = Tsmin

ϕmax;i = ϕmax = 1:26:

Fig. 3. Flow chart of the proposed algorithm to estimate the regional surface net radiation, soil heat flux, evaporative fraction and latent heat flux from MODIS data.
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2.3.7. Retrieving evaporative fraction (EF) from the combined-effect
parameter ϕ

Once the combined-effect parameter ϕ is obtained, the evapora-
tive fraction (EF) can be estimated using Eq. (2) with Δ calculated
with Ts instead of Ta.

2.4. Estimation of net radiation

Surface net radiation (Rn) is defined as the sum of surface net
shortwave radiation (Rsw) and net longwave radiation (Rlw). In this
work, a parameterization of Rsw fully based on MODIS products
proposed by Tang et al. (2006) is used, namely:

Rsw =
E0 cosθs

D2 ðα′−β′rÞ; ð7Þ

with

α′ = 1−a1 = μ−a2 = μ
x−ð1− expð−μÞÞða3 + a4w

yÞ= μ

β′ = 1 + a5 + a6 ln μ + a7w
z

r = b0 + ∑
7

i=1
biρi

where E0 is solar irradiance at Top Of Atmosphere (TOA), θs is the solar
zenith angle extracted fromMODIS Geolocation product (MOD03), D is
the earth–sun distance in astronomical unit, r is the broadband albedo at
TOA, μ is the cosine of solar zenith angle, a1–a7, x, y, z are constants for
various types of surfaces (Land, Ocean, and Snow/Ice) and predefined in
table 4 of Tang et al. (2006),w is the precipitable water extracted from
MODISAtmospheric PrecipitableWater product (MOD05_L2), b0–b7 are
the coefficients depending on the view zenith angle and the solar zenith
angle both retrieved fromMOD03, ρi is the TOA narrowband reflectance
measured by MODIS band i (i=1–7) retrieved from MODIS Calibrated
Radiances product (MOD021KM).

Similar to the calculation of surface net shortwave radiation, Tang
and Li (2008) further proposed a scheme to directly estimate the
downward longwave radiation (Ld) fromonly radiancesmeasured at the
TOA by six MODIS thermal infrared channels—28, 29, 31, 33, 34 and 36
and surface emitted radiation from the MODIS land surface tempera-
ture/emissivity products (MOD11) using the following formulae:

Ld = c0 + c1 × M29 + c2 × M34 + c3 × M33 + c4 × M36 + c5 × M28

+ c6 × M31

ð8Þ

Rlw = εsLd−5:67 × 10−8εsT
4
s ð9Þ

εs = 0:273 + 1:778ε31−1:807ε31ε32−1:037ε32 + 1:774ε232 ð10Þ

where ci (i=0–6) are coefficients depending on the view zenith angle
and surface altitude both extracted from MOD03, M is the TOA
radiance measured by the MODIS thermal infrared channel extracted
from MOD021KM and the number in the subscript indicates the
thermal channel of MODIS sensor, εs is the surface emissivity, Ts is
surface temperature (K), ε31 and ε32 are respectively surface emissivity
in MODIS channels 31 and 32 retrieved with Ts from MOD11.

Readers are recommended to refer to Tang et al. (2006) and Tang
and Li (2008) for detailed information about these algorithms of
retrieving surface net radiation from MODIS products.

2.5. Estimation of soil heat flux

Soil heat flux (G) is the heat energy used to cool or warm the
subsurface soil. It is theoretically proportional to the thermal

conductivity and vertical temperature gradient in the subsurface
soil. Since it is impossible to measure G at regional scale at ground, a
great number of papers have been devoted to estimating soil heat flux
indirectly from certain land surface parameters retrieved from
satellite data such as Ts, NDVI, LAI, Albedo and Fr (Allen et al., 2007;
Bastiaanssen, 2000; Choudhury, 1989). In this work, the ratio of G to
Rn (Г) is assumed to be linearly decreasing from the dry bare soil to
full vegetation cover with the increase of Fr as proposed by Su (2002):

Γ = G= Rn = Γv + ð1−FrÞðΓs−ΓvÞ ð11Þ

where Гv and Гs are respectively fractions for the full vegetation cover
and dry bare soil. According to the in-situ point measurements, Г=G/
Rn ranges from 0.05 for full vegetative cover (Fr=1) to a maximum of
0.3 to 0.5 for dry bare soil (Fr=0) depending on the different types of
soils (Daughtry et al., 1990; Li & Lyons, 1999). In this work, Гv=0.05
and Гs=0.4 (average of 0.3 and 0.5) are assumed.

Knowing the surface net radiation (Rn), soil heat flux (G) and EF,
the ET can be straightforward derived using Eq. (1).

3. Results and validation

3.1. Study area

A large and intensive field experiment was conducted in Heihe
river basin from May 20th to August 21st 2008. This experiment
aimed to better understand the hydrological and related ecological
processes at watershed scale and to promote the quantitative remote
sensing inwatershed science related studies. In the experiment, a very
dense network of stations, including automatic meteorological
stations, hydrological stations, rain gauges, rainfall radar and flux
towers, etc., has been installed to collect atmospheric and ground
data. For further information about the Heihe field experiment,
readers are referred to Li et al. (2008). Heihe river basin is influenced
by East Asian Monsoon climate and has heterogeneous distribution of
precipitation during the year. Mean annual rainfall in this basin is
approximately 174 mm and more than 73% of annual rainfall occurs
during the rainfall season from June to September. Our study area is
located in the middle reach of Heihe river basin, Northwest China,
with the climate being arid in temperate zone and total area about
38,000 km2 (the latitude ranging from 38.7°N to 39.8°N and longitude
being 98.5°–102°E). Fig. 4(a) shows a yearly IGBP land cover classifi-
cation map in 2004 over the study area derived from the MODIS land
cover type (MOD12Q1). Surface elevation in most areas is approxi-
mately 1200–1600 m above sea level. A mountain with elevation of
about 3000 m lies in the southwestern part of the study area. The zone
where our LAS instrument was set up is sparsely vegetated surfaces
with short grass and agricultural crops as shown in Fig. 4(b).

3.2. Large Aperture Scintillometer and meteorological data

LAS operations were continually conducted during the Heihe field
experiment over flat grassland along northeast–southwest direction
fromMay 20th to August 21st, 2008. Calibration of LASmeasurements
was made with observations from an Eddy Correlation system (later
dismantled for unknown reasons) nearby the transmitter of the LAS
during the first several days after LAS was installed. Location of the
LAS is indicated by the blue filled rectangle in Fig. 4(a) and the
zoomed-in map of LAS installed area is given in the image of Fig. 4(b).
Length path between transmitter and receiver of LAS is 1550 m and
the surface elevations of the sites of transmitter and receiver are
respectively 1384 m and 1395 m. Land covers between transmitter
and receiver of LAS are mainly composed of short grass, clover, and
reed. Surface of reedy patch (about 0.25 km2) remains permanently
wet due to the standing water and shallow groundwater tables in this
area. The combination of wet surface types with the arid climate here
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has induced a thin saline–alkaline soil surface where short grass and
clover are distributed. Several temporally discrete measurements of
soil water content at depths of 5–100 cm (soil type: loam) by
gravimetric method in the short grass and clover sampling area shows
volumetric soil water content during the LAS operation period varied
from about 15% to 45%. In most cases, the volumetric soil water
content was greater than 30%. Both the transmitter and receiver were
installed on two tripods fixed with two towers at the heights about
9.25 and 9.1 m respectively above ground. Power was supplied by two
different solar power panels and a battery. 10-min interval values of
both UCn

2 (function of the logarithm of structure parameter of the
refractive index of air with 10 as the base) and signal strength, and the
variance of UCn2 were stored in a built-in data logger.

Two meteorological stations surrounding the transmitter of LAS,
namely a station jointly set up by China and Japan (hereinafter
referred to as “China–Japan station”) and an automatically recorded
station (hereinafter referred to as “automatic station”), were
deployed respectively before and during the period of LAS measure-
ments. Both stations were equipped with a set of standard
meteorological instruments to measure air temperature, wind speed
and direction, relative humidity and atmospheric pressure, etc. The
meteorological measurements were made respectively at 10 m for
China–Japan station and at 1.5 m for the automatic station and were
recorded every ten minutes as that of LAS.

Post-processing of the LAS-measured data is performed with the
support ofWINLAS software developed by Kipp and Zonen to calculate
sensible heat fluxes representative of spatially averaged values. Inputs
to the WINLAS mainly include LAS measurements of UCn2 and signal
strength and additional meteorological observations of wind speed,
atmospheric pressure, air temperature, relative humidity and Bowen
ratio, surface roughness and displacement height, length and height of
path. Monin–Obukhov Similarity Theory (MOST) is applied inWINLAS
software to derive sensible heat flux from the LAS measurement and
other additional data. At near infrared wavelength of 880 nm, the
observed scintillations are primarily caused by turbulent temperature
fluctuations. In this case, the relationship between the structure
parameter of temperature (CT2) and the structure parameter of the
refractive index of air (Cn2) can be simplified as:

C2
n≈

−0:78⋅10−6P
T2
a

 !2

C2
T 1 +

0:03
β

� �2
; ð12Þ

where P is atmospheric pressure (Pa), β is the Bowen ratio. The last
term in the right hand of equation (after CT

2) is a correction for

humidity related scintillations. For unstable conditions, sensible heat
flux is related to CT

2 based on MOST (Wyngaard et al., 1971) with the
following equation:

C2
T ðzLAS−dÞ2=3

T2
*

= 4:9 1−6:1
zLAS−d
LMO

� �−2=3
; ð13Þ

where zLAS is the height of the LAS above the surface (m), d is the
zero-displacement height (m), T* is temperature scale (dimension-
less), LMO is the Obukhov length (m).

As Bowen ratio (β) is not a constant during the period of LAS
operations and no other Bowen ratio data can be acquired, this work
attempts to apply the average values of few-day Eddy Correlation
system-measured data derived at the beginning of LAS operation to
the calculation of LAS-measured sensible heat flux for whole period of
the experiment. Since there is no remarkable variation visually in the
vegetation height during the period of operation of LAS, surface
roughness and displacement height are respectively assigned to the
fixed values using rule of thumb assumptions with z0m=0.1 m and
d=0.5 m for simplicity and operational convenience.

The uncertainty of LAS-measured sensible heat flux from inputs to
WINLAS software is evaluated based on Gaussian Error Propagation,
which can be expressed in first order accuracy as standard deviation
σ. For a function F with n independent variables x (xi=1 to n), the
uncertainty (σ) can be estimated as:

σ2 = ∑
n

i=1

∂F
∂xi

� �2

σ2
xi
; ð14Þ

where σxi is the uncertainty in xi.
Following the work of Marx et al. (2008) and taking into account

the actual situations and conditions in our experiment, Table 1 lists
the tolerances of the ten variables which influence the accuracy of
LAS-measured sensible heat flux (H). Assuming these ten variables are
independent (Marx et al., 2008) and under the normal conditions at
the time of MODIS data used in this study, as predicted by Eq. (14)
with the uncertainties of variables listed in Table 1, contribution of
each variable to the uncertainty of LAS-measured H is given in the
fourth column of Table 1 and overall uncertainty of LAS-measured H is
about 9.2 W/m2. From this table, one can see that Bowen ratio has
large impact on the LAS-measured H (8.1 W/m2) while measurement
uncertainties of meteorological variables have negligible impacts in
our study.

As two meteorological stations operated near our LAS instrument,
one is the China–Japan station which was in operation during the

Fig. 4. A quick view of study area and location of the LAS instrument. ((a) A yearly IGBP land cover classification map in 2004 from MOD12Q1. 0 = water, 1 = evergreen needleleaf
forest, 2 = evergreen broadleaf forest, 3 = deciduous needleleaf forest, 4 = deciduous broadleaf forest, 5 =mixed forests, 6 = closed shrubland, 7 = open shrublands, 8 = woody
savannas, 9 = savannas, 10 = grasslands, 11 = permanent wetlands, 12 = croplands, 13 = urban and built-up, 14= cropland/natural vegetation mosaic, 15 = snow and ice, 16 =
barren or sparsely vegetated. (b) The zoomed-in map of the LAS instrument site).
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whole period of the field experiment and another is the automatic
station operated only from May 26th to July 16th. Since the LAS
instrument cannot measure directly the sensible heat flux (H), H can
only be derived from LAS-measured data in combination with Bowen
ratio, surface roughness length, displacement height and the
atmospheric parameters/variables measured at meteorological sta-
tion as described above. Fig. 5 shows good agreement betweenMODIS
overpass-time LAS-measured H with atmospheric parameters/vari-
ables collected respectively from both stations. In this figure, H
estimated using automatic station seems slightly larger than that
derived using China–Japan station at higher H values. The RMSE
between them is 9.41 W/m2 and R2 is 0.962. This good agreement
demonstrates the consistency of LAS-measuredHwithmeteorological
data collected respectively from China–Japan station and automatic
station. Therefore, in the following, only H derived from LAS data
using atmospheric parameters/variablesmeasured at the China–Japan
station will be compared with H derived from MODIS data using the
Ts–Fr triangle method.

In order to evaluate the reliability of inferred LAS-measured H,
Fig. 6 shows a comparison of H derived respectively from Eddy
Correlation system (EC) and LASmeasurements onMay 20th from 8 h
to 18 h. Relatively good agreement in the morning is observed
between LAS-measured and EC-measured H though EC-measured H is
slightly higher than that deduced from LAS measurements. Larger
differences observed in the afternoon may result from 1) the strong
turbulent mixing of heat in the planetary boundary layer, 2) the
surface heterogeneity between LAS and EC sites, and 3) the
inconsistent source areas of those two H measurements. Fluxes

obtained from EC measurements are only representative of a
relatively small area (on the order of 102 m2) around the EC site
while LAS is capable of measuring temporally continuous H over path
lengths of few kilometers (the only meaningful comparison between
LAS and EC can be made when heterogeneity within the footprints
and differences between the footprints are taken into account, which
will complicate our study and be out of the main scope of this paper).
Furthermore, LAS-measured H is much more stable in the daytime
evolution whereas H derived from EC fluctuates seriously with time.

3.3. Remote sensing data

MODIS, onboard the TERRA satellite, has 36 spectral channels ranging
from 0.405 to 14.385 μmand can acquire data at three spatial resolutions
—250, 500, 1000 m. To date, 44 distinct MODIS products related to a
variety of disciplines, including land surface, atmospheric sciences and
oceanography, have been developed by theMODIS Science Team.MODIS
data products used in this work are land surface temperature/emissivity
(MOD11A1 and MOD11_L2), NDVI (MOD13A2), Calibrated Radiances
(MOD021KM), Geolocation (MOD03), Precipitable Water (MOD05_L2)
products. All 24 clear-sky MODIS data from May 23rd to August 21st
over our study area are used to estimate the EF, ET andH using the Ts–Fr
triangle method/algorithm. The overpass-time (local solar time) and
view zenith angle corresponding to the 24 clear-sky MODIS data vary
approximately from 10:06 to 11:30 AM and from about 5 to 60°
respectively.

MOD11A1 (MODIS/Terra Land Surface Temperature/Emissivity
Daily L3 Global 1 km SIN Grid) and MOD13A2 (MODIS/Terra
Vegetation Indices 16-Day L3 Global 1 km SIN Grid), generated by
the MODIS Adaptive Processing System (MODAPS) at the U. S.
Geological Survey EROS Data Center (EDC), are stored as gridded level
3 products in the Integerized Sinusoidal projection with a nominal
spatial resolution of 1 km (about 926 m) in the HDF (Hierarchical Data
Format) format. Daytime surface temperature data (LST_Day_1km),
daytime overpass-time (Day_view_time) and 16-day NDVI data
(1_km_16_days_NDVI) extracted respectively from the MOD11A1
and MOD13A2 products are re-projected to Albers Equal Area (AEA)
projection with the MRT (MODIS Reprojection Tool). The difference
betweenMOD11_L2 andMOD11A1 is the different spatial resolutions,
in which the spatial resolution of MOD11_L2 product is 1000 m same
as that of the following three MODIS products.

MOD021KM, MOD03 and MOD05_L2 can be accessed from the
LAADS (Level 1 and Atmosphere Archive and Distribution System)
web. MOD021KM is consisted of calibrated and geolocated TOA
radiances and reflectances for 36 bands. MOD03 product mainly

Table 1
Tolerances used to evaluate the uncertainty in LAS-measured H.

Quantity (x) Unit Assumed relative
uncertainty (%)

Induced uncertainty
of H (W/m2)

Air temperature °C ±1 0.16
Wind speed m/s ±1 0.38
Atmospheric pressure hPa ±1 0.61
Relative humidity – ±10 0.10
Bowen ratio – −75 8.13
Roughness length m ±10 0.99
Path length m ±1 2.72
Height of wind speed
measurements

m ±1 0.07

Path height m ±1 1.10
UCn

2 V ±1 2.84

Fig. 5. Comparison of MODIS overpass-time LAS-measured sensible heat fluxes
calculated respectively using measurements at China–Japan station and automatic
station.

Fig. 6. Comparison of sensible heat fluxes measured on May 20th by LAS and Eddy
Correlation system (time 800 means 8 h).
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includes datasets of geodetic coordinates (latitude and longitude),
solar zenith and azimuth angles, satellite zenith and azimuth angles,
and ground elevation for each 1-km sample (pixel). MOD05_L2
contains column water-vapor amounts over clear land areas and
above clouds over both land and ocean.

3.4. Results and validation

The algorithm described in Section 2 is applied to all 24 clear-sky
MODIS data acquired over our study area. As an example, Fig. 7 shows
a plot of Ts against Fr in the two-dimensional space for MODIS data
acquired on Julian day 201 and the corresponding dry and wet edges
determined automatically by the proposed algorithm. This figure
confirms that the pixels in the study area form a triangle in the two-
dimensional space Ts–Fr and the dry andwet edges can be determined
on the basis of the triangle space using our proposed algorithm.
Similar results are obtained for other 23 clear-sky days.

Fig. 8 shows the surface net radiation (Rn), soil heat flux (G) and
sensible heat flux (H) estimated from MODIS data alone on the LAS
instrument site using our proposed edges determination algorithm for
the Ts–Fr method for 24 clear-sky days at MODIS overpass time. From
this figure, one can see that the Rn for all 24 clear-sky days varies from
about 518 to 739 W/m2 with the mean value of 618 W/m2. The
minimum and maximum Rn values occur on Julian days 226 and 177

respectively. Large variation of Rn from day to day may be due to the
presence of clouds and/or due to the variations of MODIS local solar
time varying from 10:06 to 11:30 AM for the 24 clear-sky days. There
is no remarkable variation in the soil heat flux as Fr changes a bit from
0.02 to 0.29 during this period. The mean, minimum and maximum
values of soil heat flux are 209, 172 and 248 W/m2 respectively. In
most cases, MODIS-derived sensible heat flux is smaller than the soil
heat flux at the LAS site, which may be related to the relatively high
surface soil water content in this area during the LAS operation period.

Fig. 9 displays EF estimated fromMODIS data alone on the LAS site
using our edges determination algorithm for the Ts–Fr method for 24
clear-sky days at MODIS overpass time. One can see from this figure
that EF varies from 0.315 (day 144) to 0.832 (day 189) with the mean
value of 0.659. EF increases rapidly from the end of May to the end of
June, which is corresponding to precipitation increase during the
rainfall season from June. Before June 30th, EF is generally lower than
0.55 (an exception occurs on Julian day 177) while during the period
of July to August, EF varies mainly from 0.63 to 0.83. This relatively
high EF during the period from the end of June to August may be due
to the fact that this period is within the period of rainfall season in our
study area.

Fig. 10 illustrates the highest surface temperature (Tsmax) at the
dry edge and surface temperature for the wet edge (Tsmin, the lowest

Fig. 7. A plot of Ts against Fr in the two-dimensional space for MODIS data acquired on
day 201 and the corresponding dry and wet edges determined automatically by the
proposed algorithm.

Fig. 8. Surface net radiation, soil heat flux and sensible heat flux of the LAS site derived
from MODIS data using our proposed algorithm for 24 clear-sky days.

Fig. 9. Evaporative fraction of the LAS site estimated from MODIS data using the
proposed algorithm for 24 clear-sky days.

Fig. 10. The highest surface temperature at the dry edge (Tsmax) and surface
temperature at the wet edge (Tsmin) inferred from MODIS data using our proposed
algorithm for 24 clear-sky days.
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surface temperature at the dry edge) obtained using our edges
determination algorithm for 24 clear-sky days at MODIS overpass
time. These surface temperatures are deduced from the determined
dry edges for the 24 Ts–Fr triangles. Tsmax varies from 316.8 (Julian day
222) to 332.2 K (Julian day 204) and Tsmin from 277.8 (Julian day 144)
to 308.6 K (Julian day 183). It should be noted that range of fractional
vegetation cover as large as possible is of crucial importance for the
determination of dry and wet edges in our work, which gives a
possible explanation to the relatively low Tsmin on Julian day 144 over
the study area since the variation of Fr is only from 0 to 0.4. R2 for the
linear fit of the dry edge in all 24 constructed Ts–Fr triangles ranges
from 0.829 to 0.982 (see Table 2), implying that Eq. (3) canwell depict
the relationship between Ts and Fr in the dry edge.

As a validation, Fig. 11 shows a comparison of MODIS-derived H
using the Ts–Fr triangle method with LAS-measured H for 24 clear-sky
days during the period of LAS operation. A very good agreement can
be found in this figure with RMSE=25.07 W/m2. MODIS-derived H
varies from about 75.3 to 226.2 W/m2 with the mean value of

136.7 W/m2. Large discrepancies (ΔH) between MODIS-derived H
and LAS-measured H occur on Julian days 167 (ΔH=55.3 W/m2), 174
(ΔH=67 W/m2), 217 (ΔH=−49.7 W/m2), and 226 (ΔH=
−40.6 W/m2). On Julian days 165 and 173, heavy rainfalls took
place in the study area, leading to an inaccurate determination of dry
and wet edges (i.e. Tsmax and (Tsmax–Tsmin) decrease), and causing
probably an underestimation of EF and an overestimation of H on
Julian days 167 and 174.

Due to the lack of sufficient information, it is not yet possible for us to
explain the possible reasons for relatively large discrepancies found on
Julian days 217 and 226. It might be related to the relatively low surface
net radiation (Rn=576W/m2, 518W/m2 for Julian days 217 and 226
respectively) derived at MODIS overpass time on these days when
compared with values estimated on Julian days 216 (Rn=710W/m2)
and 225 (Rn=710W/m2). An advantage in the Ts–Fr triangle method is
that as long as the ratio of difference between Tsi and Tmax,i to the
difference between Tmax,i and Tmin,i (see Fig. 1) does not change for a
given Fr, an accurate combined-effect parameter ϕ and evaporative
fraction for a givenpixel (Tsi, Fr) can be obtained, implying that the exact
placements of both dry and wet edges do not affect the results
significantly but their relative positions do.

Uncertainty of estimated H on the 24 clear-sky days comes from
several sources. There are a lot of papers indicating that ϕmax=1.26
could be used to identify the potential ET conditions (Crago &
Brutsaert, 1992; Jiang & Islam, 1999; Priestley & Taylor, 1972).
Combing Eqs. (2), (5) and (6), the effect of ϕmax on EF estimation in
the Ts–Fr triangular space can be expressed as:

∂EF
∂ϕmax

=
Δ

Δ + γ
Tmax;i−Tsi

Tmax;i−Tmin;i
ð1−FrÞ + Fr

 !
≤ Δ
Δ + γ

: ð15Þ

Since Δ/(Δ+γ) varies from 0.55 to 0.85 for Ta ranging from 10 to
40°C, an error of 0.1 on ϕmax can only lead to an error of EF less than
0.085.

As for the effects of both NDVImin and NDVImax on Fr used in our
study, they can be derived analytically from Eq. (4) as follows:

F1 =
∂Fr

∂NDVImin
= 2

ðNDVI−NDVIminÞðNDVI−NDVImaxÞ
ðNDVImax−NDVIminÞ3

ð16Þ

F2 =
∂Fr

∂NDVImax
=

−2ðNDVI−NDVIminÞ2
ðNDVImax−NDVIminÞ3

: ð17Þ

From Eq. (16), one can see that F1=0 if NDVI=NDVImin or
NDVI=NDVImax and F1 reaches its maximum at NDVI=(NDVImax+
NDVImin)/2. Inserting typical value of 0.6 for NDVImax–NDVImin,
maximum of F1 is equal to −0.83. Therefore, an error of 0.1 on
NDVImin will lead to an error of Fr from −0.083 to 0.

Eq. (17) shows that F2=0 if NDVI=NDVImin and F2 reaches its
maximum at NDVI=NDVImax. Inserting typical value of 0.6 for
NDVImax–NDVImin, maximum of F2 is equal to −3. Therefore, an
error of 0.1 on NDVImax will lead to an error of Fr from −0.3 to 0.
Fortunately, Fr is closed to 1 when NDVI approaches to its maximum
value (NDVImax). Under such circumstance, EF is also closed to 1,
implying that no large error on EF and ET can be produced by the
change of NDVImax.

The impact of uncertainty of Fr on (Rn–G) in our study can be also
derived analytically from Eq. (11) and can be written as:

∂ðRn−GÞ
∂Fr

=
∂ðRn−RnðΓv + ð1−FrÞðΓs−ΓvÞÞÞ

∂Fr
= ðΓs−ΓvÞRn: ð18Þ

From this equation, one can note that (Rn–G) will change by about
0.035Rn if Fr changes 0.1, namely an error of 0.1 on Fr will lead to an

Table 2
Statistics of the determined dry edges by our edges determination algorithm for 24
clear-sky days (a and b respectively represent the intercept and slope of the dry edge).

Julian day a b R2

144 326.63 −48.79 0.957
151 323.39 −31.20 0.947
155 327.38 −36.29 0.982
156 328.10 −31.88 0.918
167 329.97 −33.32 0.959
174 320.49 −29.86 0.971
177 327.22 −20.92 0.961
183 328.48 −19.90 0.922
187 327.88 −22.37 0.979
189 326.82 −24.21 0.921
197 328.65 −24.83 0.909
199 324.05 −23.25 0.829
201 323.78 −20.54 0.924
204 332.23 −28.57 0.944
215 322.08 −21.62 0.942
216 328.38 −26.41 0.932
217 325.16 −21.95 0.894
218 330.18 −26.91 0.951
222 316.76 −17.66 0.938
223 317.82 −18.27 0.929
225 319.68 −21.20 0.955
226 317.38 −16.93 0.921
229 324.32 −24.92 0.941
234 322.30 −24.90 0.947

Fig. 11. Comparisons of sensible heat flux estimated from MODIS data using our
proposed algorithm with that measured by LAS instrument for 24 clear-sky days.
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error of (Rn–G) varying from 3.5 to 28 W/m2 for Rn ranging from 100
to 800 W/m2.

It should be also emphasized that uncertainties in the sensible heat
flux derived from Ts–Fr triangle are partly attributed to the uncertainty
related to the estimation of both Rn and G. Tang et al. (2006) reported
the RMSE of less than 20 W/m2 for clear-sky days by comparing the
estimated surface net shortwave radiation with MODIS products with
in-situ measured values at YuCheng field site during an extended
period of time covering all seasons in 2003. A comparison of estimated
surface net longwave radiation from Tang and Li (2008) with field
measurements at six sites of the Surface Radiation Budget Network in
United States has shown a RMSE of approximately 26 W/m2 at MODIS
overpass time of cloud-free days in 2006. As G accounts for a large
portion of Rn over our study area, it will have large influences on the
uncertainties of the estimated sensible and latent heat fluxes. Noting
that comparisons of estimated EF with ground-based measurements
are essentially the true validation of the Ts–VI triangle method for ET
estimates because EF is a fairly conservative quantity over the course
of a single day or from one day to the next and is much more
informative than ET. Unfortunately, as there were no instruments
equipped to measure Rn, G and EF from May to August at our LAS site
and meteorological stations, there were no in-situ measurements of
Rn G and EF available at the grassland. Therefore, it is impossible to
further investigate the sources of uncertainties in sensible and latent
heat fluxes.

4. Conclusions

A practical algorithm was developed for quantitative determina-
tion of dry and wet edges for the Ts–VI triangle method from MODIS
data and products. This algorithm can provide an estimation of surface
net radiation, soil heat flux, evaporative fraction and evapotranspira-
tion at regional scale from MODIS data and products alone.

Determination of dry and wet wedges in Ts–VI triangular space
generally involves a large degree of uncertainty. If the surface soil
volumetric water content ranges from 0 to 1 for all given fractional
vegetation covers, the observed wet edge can be treated as the true
wet edge with potential ET and can be probably determined in an
analytical way. However, this cannot be easily realized in arid and
semi-arid areas because it is hard to find potentially evaporating
pixels in these climate regions. The range of Fr depends on the growth
stage of vegetation and the spatial representativeness of selected
study area. The rules and algorithm proposed in this paper give a
feasible way to estimate the highest surface temperature at each Fr
interval and subsequently determine the dry and wet edges in arid
and semi-arid climate regions from the Ts–Fr triangular space.
Although assumption of two-step linear interpolation scheme
involved in the estimation of the combined-effect parameter ϕ and
EF is still questionable and not yet verified directly, a very good
agreement is found with the RMSE=25.07 W/m2 when sensible heat
flux estimated from MODIS data is compared with that measured by
LAS instrument. The uncertainty of LAS-measured H from uncertain-
ties of meteorological/surface measurements, Bowen ratio and LAS
measurements is evaluated to be about 9.2 W/m2 in our study cases.

Problems encountered in the determination of dry and wet edges
during the period of our experiment mainly include: (1) only few
points that were not contaminated by cloud in the Ts–VI space can be
obtained on partly cloudy days in the study area, which will make the
Ts–VI triangle method for ET estimates unreliable; and (2) in a short
period after a rainfall event, the observed dry edge in the Ts–VI
triangle may not indicate pixels withminimum ET for the given Fr due
to the non-zero surface soil water content. If the observed dry edge is
regarded to represent the true dry edge in this case, uncertainty and
error will occur. Fortunately, wet surface soil will soon become dry as
a result of large potential ET in the arid and semi-arid areas on a clear
day.

Analytical analysis shows that an error of 0.1 on Fr will lead to an
error of 0.035Rn on the estimation of surface available energy used in
this paper and the effect of ϕmax on EF estimation in the Ts–Fr
triangular space is very small, an error of 0.1 on ϕmax can only lead to
an error of EF less than 0.085. Moreover, the effects of both NDVImin

and NDVImax on Fr for a given NDVI depend on the NDVI itself, an error
of 0.1 on NDVImin and NDVImax will lead to an error of Fr respectively
from−0.083 to 0 and−0.3 to 0. Fortunately, when NDVI approaches
NDVImax, EF also approaches 1, implying that no large error on EF and
ET can be generated by an error on NDVImax.

To reduce the uncertainty in the estimation of turbulent heat
fluxes from the Ts–Fr method, further work needs to be carried out to
verify the relevant parameters/variables step by step provided that
data required are available in the future and more validation work
needs to be performed in other different regions for the proposed
algorithm. In addition, further work needs also to be carried out to
explore the non-linearity of EF (ϕ) in the Ts–VI triangular space for a
given atmospheric forcing and the use of a scaled temperature T*
(varying from 0 to 1.0) instead of the use of absolute Ts to construct
the scaled surface temperature–vegetation index (for example, T*–Fr)
triangle.
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