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ABSTRACT
A new analytical model is designed to reproduce the complex modulus
of asphalt concrete in cyclic dynamic tests. Instead of multiplying rheo-
logical elements with fixed parameters, only two elements with variable
parameters are connected in parallel: the stiffness component �E related
to the strain and the viscosity component �η related to the strain rate.
They compose the VENoL (NOnLinear ViscoElastic) model. Their variations
as a function of pulsation are calibrated with the Carreau–Yasuda model
at a reference temperature and strain amplitude. The conversion from
one temperature to another is done using the Time-Temperature Super-
position Principle defined by its shift factor aT . For the conversion from
one strain amplitude to another (nonlinearity), the Time-Amplitude Semi-
Superposition Principle is newly created, defined by two shift factors aA and
bA. Themodel is calibratedwith experimental data from the literaturebased
on direct tension-compression tests. The results obtained corroborate the
experiments accurately.
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1. Introduction

1.1. Linear and nonlinear viscoelastic regions of asphalt materials in dynamic analysis

A material is defined as Linear ViscoElastic (LVE) if stress is proportional to strain at any given time
and if the Boltzmann superposition principle holds. However, like many materials, asphalt materials
are NonLinear ViscoElastic (NLVE). Thus, to apply LVE theory, it is important to define the limits of the
region for which the material behaviour can still be considered LVE. It is known that the influence of
temperature and loading time (frequency) on the relationship between stress and strain belongs to
the LVE region. The method of generating master curves using the Time-Temperature Superposition
Principle (TTSP) applies within the LVE region and also within the NLVE region (Graziani et al., 2019;
Nguyen et al., 2015).

Recently, several scientists attempted to define the range of strain amplitude with cyclic tests
for which the asphalt materials could be considered LVE. By analysing strain sweep data for asphalt
binders during the SHRP study, Anderson et al. (1994) found that there was rarely a clear distinction
between LVE andNLVE regions but thatwith increasing strain levels, the normof the complex stiffness
modulus decreased at an ever-increasing rate. Therefore, they arbitrarily established the upper limit of
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the LVE region as the point at which the modulus decreases to 95% of its initial value. From this crite-
rion, Airey et al. (2004) found that the LVE bulk strain limit for mixtures was in the order of 100 µm/m,
in line with the Rilem recommendation (Di Benedetto et al., 2001).

However, this LVE limit should be considered only as an approximation. Indeed, the 95% LVE limit
is highly dependent on temperature and frequency conditions (Airey et al., 2004; Babadopulos et al.,
2019). Then, several experimental studies on mixtures have shown that the norm of the modulus
decreased almost linearly with increasing strains levels both below and above the LVE limit (Doub-
baneh, 1995; Phan et al., 2017; Underwood & Kim, 2012; Uzan & Levenberg, 2007). Furthermore, in
addition to nonlinearity during strain sweep tests, other effects may develop depending on the strain
amplitude level and the number of cycles, such as self-heating, thixotropy and damage (Di Benedetto
et al., 2011; Gauthier et al., 2010; Mangiafico et al., 2018; Nguyen et al., 2019). They may lead to
erroneous conclusions.

1.2. Modelling the behaviour of asphalt concrete under dynamic loading

1.2.1. Modelling the linear viscoelastic behaviour
For several decades, many scientists have focused on creating rheological models to reproduce the
LVE behaviour of asphalt concrete under dynamic loading over a wide range of temperatures (−30
to 50°C) and frequencies (0.001Hz to 10Hz). Two categories of rheological models can be distin-
guished: Discrete Relaxation Spectrum Models (DRSM) and Continuous Relaxation Spectrum Models
(CRSM). Among DRSMs, we can list the generalised Maxwell model (or Prony series) and the gener-
alised Kelvin–Voigt model. They can correctly simulate the behaviour of asphalt mixes, but provided
that enough elements are used, i.e. at least thirty parameters (Xu & Solaimanian, 2009). CRSMs can
be represented by an infinity of Maxwell elements in parallel or Kelvin–Voigt elements in series. They
appeared with the use of parabolic elements. The most famous is the 2S2P1D model, composed of
two springs, two parabolic elements and one dashpot (Huet, 1963; Olard, 2003; Sayegh, 1965). It gives
a correct simulation of the behaviour of asphalt concrete for only seven parameters, plus two defining
the TTSP. However, it only approximates the curve return in the Black space at high temperature and
low frequency, as we can check from this thesis (Mangiafico, 2014, Figure 4.25).

Othermodelling proposals are based on analytical expressions. For example, the CAMmodel, com-
posed of the initials of its three authors, characterises the behaviour of bitumen binders with two
equations expressing the norm of the complex shear modulus as well as the phase angle according
to the pulsation (or angular frequency) (Christensen & Anderson, 1992; Marasteanu, 1999). A general-
isation of this model to binders andmixtures was also proposed by Zeng et al. (2001) with acceptable
results for nine parameters, plus two defining the TTSP.

1.2.2. Modelling the nonlinear viscoelastic behaviour
First, in 1969, Richard Schapery (1969) developed nonlinear viscoelastic constitutive equations for
engineering materials in the time domain. He noticed that it was possible to switch from one level of
stress (or strain) to another with four coefficients: aσ (or aε), a shift factor to calculate a reduced time,
g0, g1, and g2 (orhe,h1, andh2), three nonlinear parameters; all equal to 1.0when the stress (or strain) is
sufficiently small. Menglan Zeng (1997) used this model to analyse the nonlinear behaviour of asphalt
concrete in stress relaxation. He obtained good results, but a lot of calibration work was needed. He
also defined that the temperature dependency could be added to the model by multiplying the shift
factor aT of the TTSP with the shift factor aε .

In cyclic dynamic analysis, Zeng et al. (2001) used this time an analytical approach with the gener-
alisedCAMmodel to reproduce at different strain amplitudes the complex stiffnessmodulusof binders
and mixtures. They created a shift factor aγ to calculate a reduced frequency. The Williams-Landel-
Ferry (WLF) equation (Williams et al., 1955), usually used to define the shift factor aT of the TTSP, was
considered appropriate for expressing variations of aγ as a function of strain amplitude. However, the
simulations obtained for the phase angle were incomplete. A vertical shift factor seems to bemissing.
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Other researchers tried to improve the 2S2P1Dmodel into a nonlinear model for mixtures. Nguyen
et al. (2015) created the 2S2P1Dnlmodel. As a first approach, they introduced thehypothesis of a linear
decrease of the modulus according to the strain amplitude applied to each spring and the group of
parabolic elements. The results obtained are correct for the norm of the stiffness modulus, but not
for the phase angle. On the other hand, Graziani et al. (2019) calibrated the 2S2P1D model for each
complex stiffness modulus obtained at 15, 30 and 60 µm/m. Then, they proposed phenomenological
equations about variations of the parameters of the 2S2P1Dmodel according to the strain amplitude.
But this process strongly depends on the quality of the fit and the assumptions made. For example,
they assumed that theminimum andmaximum bounds of the complex stiffness modulus varied with
the strain amplitude. However, the nonlinearity fades as it approaches low temperatures and high
frequencies (Nguyen et al., 2015).

1.3. Study presented in this paper

The study presented hereafter is a part of a larger research effort within a Ph.D. thesis (Coulon, 2022),
itself integrated into the national project ANRMoveDVDC. The objective of this thesis is to numerically
reproduce, with the Discrete Element Method (DEM), cyclic tests of complex modulus and fatigue on
asphalt concrete. Nevertheless, this paper is only devoted to the first step which defines a rheological
model that can be easily implemented as a contact law in DEM and that can reproduce the instanta-
neous LVE behaviour of asphalt concrete. The addition of the nonlinear behaviour is also essential to
make the transition, for example, from a complex modulus test at 50 µm/m to the initial modulus of a
fatigue test at 100 µm/m.

The LVEmodels listed in Section 1.2.1werenot suitable for our purposes. Indeed, theDRSMs require
too many parameters to reproduce the complex stiffness modulus at different temperatures and fre-
quencies. The precision of the 2S2P1D model would have been sufficient if it did not need fractional
derivatives, which are difficult to implement in numerical simulations. The choice was therefore to
create a new analytical model, with a different structure from the CAM model. Indeed, we think that
modelling the normof the complex stiffnessmodulus and the phase angle is not the right choice since
they are calculated from the real and imaginary parts of the modulus. The real part is associated with
elasticity and the imaginary part with viscosity. Consequently, their effects are combined within the
norm and the phase angle, which complicates the observations, especially if we need to add the effect
of nonlinearity.

Regarding the integration of the NLVE behaviour, the nonlinear viscoelastic constitutive equa-
tions were not retained because they are too difficult to implement in DEM. The other models listed
in section 1.2.2 are imprecise, but the analytical approach developed by Zeng et al. (2001) seemed
to be the most promising. This incomplete approach has therefore been improved in this paper.
The development of this approach has led to a better understanding of the mechanisms leading to
nonlinearity.

Wegave to this newmodel thename ‘VENoLmodel’, forNOnLinear ViscoElasticmodel. Itwas devel-
oped using experimental data from the literature and obtained from complex modulus tests in Direct
Tension-Compression (DTC) on cylindrical specimens with a strain control mode. The VENoL model
was briefly introduced for the first time in the conference paper (Coulon et al., 2021).

Table 1 gives the meanings of the different acronyms used in the legends of the graphics of this
paper.

2. VENoLmodel design

2.1. General equation

In dynamic analysis, the complex stiffnessmodulus E∗(t) is obtained by dividing the stress signal σ ∗(t)
by the strain signal ε∗(t) (Equations (1)–(3)). ε0 is the strain amplitude, σ0, the stress amplitude and ϕ,
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Table 1. Meaning of acronyms in the legends
of the graphics.

Acronym Meaning

CMT Complex Modulus Test
NLT NonLinearity Test
SART Strain Amplitude Rise Test
Exp Experiment
Mod Modelling
20/10 Test conditions 20°C/10 Hz

the phase angle.

σ ∗(t) = E∗(t) · ε∗(t) (1)

where,

ε∗(t) = ε0 · ei·ωt (2)

σ ∗(t) = σ0 · ei·(ωt+ϕ) (3)

The stiffness modulus can split its complex form into two, composed of a real part�(E∗) and an imag-
inary part �(E∗) having the units Pascal (Equation (4)). By dividing �(E∗) by the signal pulsation ω, we
obtain �η akin to a viscosity (Equation (5)). We call it the ‘viscosity component’. The choice of its sym-
bol refers to the imaginary part of E∗ and the viscosity, because �η is also the real part of the complex
viscositymodulus η∗. In the sameway, we replace�(E∗) by�E andwe call it the ‘stiffness component’
(Equation (5)). The choice of its symbol reminds us that it is related to the real part of E∗ and the elas-
ticity. The multiplication of iω by ε∗(t) gives the derived function, the strain rate ε̇∗(t). Therefore, the
general equation is naturally obtained (Equation (6)).

σ ∗(t) = [�(E∗) + i · �(E∗)] · ε∗(t) (4)

σ ∗(t) = [�E + iω · �η] · ε∗(t) (5)

where,
{ �(E∗) = �E

�(E∗) = ω · �η

σ ∗(t) = �E · ε∗(t) + �η · ε̇∗(t) (6)

2.2. Representation

This general Equation (6) is similar to that of the Kelvin–Voigt model composed in parallel of a spring
of elasticity E and a dashpot of viscosity η. By analogy, the VENoL model can therefore be schemati-
cally represented with two elements �E and �η connected in parallel (Figure 1). Thus, with only two
elements, the VENoLmodel can be easily implemented as a contact law in numerical simulations using
the Discrete Element Method.

2.3. Variation of stiffness and viscosity components

The stiffness component �E and the viscosity component �η can vary according to entry conditions:
temperature T of the environment, pulsation ω and strain amplitude ε0 of the imposed signal. These
three parameters influence the viscoelasticity of asphalt concrete. Their effects are integrated into the
VENoL model in the following sections.

• In Section 3, the LVE behaviour is added to the VENoLmodel. Variations of the components�E and
�η as a function of pulsation are fitted using mathematical functions at a reference temperature.
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Figure 1. Schematic diagram of the VENoL model.

The temperature effect can be added with a shift factor aT from the Time-Temperature Superpo-
sition Principle. To set up this point, experimental data from Mangiafico (2014) and obtained with
DTC tests on one cylindrical specimen in strain control mode are used.

• In Section 4, the NLVE behaviour is added to the VENoL model. A new principle is developed:
the Time-Amplitude Semi-Superposition Principle. It takes into account the influence of the strain
amplitude on the components �E and �η by means of two shift factors aA and bA. To set up this
point, experimental data from Graziani et al. (2019) are used. These data were obtained with DTC
tests on two cylindrical specimens at three different strain amplitudes: 15, 30 and 60 µm/m. Thus,
the study of nonlinearity is carried out at small amplitudes.

3. Building the VENoLmodel: considering the influence of temperature and pulsation

3.1. Use ofMangiafico’s experimental data

To implement the temperature and pulsation effects in the VENoL model, Mangiafico’s experimental
data, from DTC tests on asphalt concrete and published in 2014 in his thesis, are used (Mangiafico,
2014).

3.1.1. Summary description of the specimen analysed
In his thesis, SalvatoreMangiafico launched a significant Campaign Awhose objectivewas to evaluate
the influence of Reclaimed Asphalt Pavement (RAP) material on the mechanical properties of bitumi-
nousmixtures. A total of twenty-onedifferentmixtureswere produced and tested in CampaignA,with
different RAP material contents and binder types. For this paper, only the results of one control mix-
ture are used. This material was a high modulus asphalt mixture (‘Enrobé à Module Élevé’ in French)
respecting European standard (NF EN 13108-1, February 2007). It was produced with a fresh binder of
penetration grade 35/50 and dosed at 5.35%byweight of the finalmix. Themixturewas characterised
by a continuous grading curve of 0/14mm made of silica-limestone aggregates. As it was a control
mixture, it contained 0% of RAP. Hence the mixture reference name A.0.35-50. The mixture was com-
pacted into an 610× 500× 150mm slab using a LPC-type (Laboratoire des Ponts et Chaussées) roller
compactor (NF EN 12697-33+A1, September 2007). Cylindrical specimens, with a 75mm diameter
and a 150mm height, were cored and sawn from these slabs. The void content of the specimen R4,
whose results are used here, was 3.7%.

3.1.2. Summary description of the tests of the data used
Sinusoidal cyclic DTC tests in strain control mode developed at the University of Lyon / ENTPE were
performed on cylindrical specimens. Three types of tests were executed in this thesis: complex mod-
ulus test, fatigue test and Advanced Laboratory Fatigue And Biasing Effects Test (ALFABET). For this
scientific paper, only the Complex Modulus Tests (CMT) have an interest. They were performed by
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applying a sinusoidal loading in axial strain control mode, centred on zero, with a 50 µm/m amplitude
andmeasuredwith three extensometers placed at 120° fromeach other and atmid-height of the spec-
imen. Seven temperatures (from −25°C to 40°C) and seven frequencies (from 0.01Hz to 10Hz) were
applied. In order to obtain the viscoelastic properties on a larger range, two smaller frequencies (0.001
and 0.003Hz) were added at 40°C. To control temperature, tests were performed inside a thermal
chamber. A conditioning time of 4 h was maintained at every temperature change to assure a homo-
geneous temperature state inside specimens. And a rest period of 300 s wasmaintained between two
consecutive frequencies. In the thesis, the complete experimental data of the specimen R4 from the
sample A.0.35-50 are given. Datawere retrieved from the thesis by graphical readingwith the software
‘GetData Graph Digitizer’.

3.2. Getting the experimental curves�E(ω) and�η(ω)

The first step to build the VENoL model consists to identify the experimental stiffness and viscosity
components�E and�η for the specimen A.0.35-50.R4. They are calculated from the experimental real
and imaginary parts �(E∗) and �(E∗) given by the CMT by using Equation (5). By plotting in a graph
the values of �E and �η according to the pulsation ω (Figure 2), it seems possible to superpose each
isotherm as usual for the norm of the complex stiffness modulus |E∗| and the phase angle ϕE∗ .

3.3. Application of the Time-Temperature Superposition Principle

For the VENoL model, the Time-Temperature Superposition Principle (TTSP) is characterised by calcu-
lating the reduced pulsation ωR−T and the reduced viscosity component �η,R−T from the application
of a translation factor aT on ω and �η (Equations (7) and (8)). If aT intervenes on �η , it is because in
Equation (5), �η is multiplied by ω. And since ω is multiplied by aT at the TTSP, we must divide �η by
aT to keep the equation in balance.

ωR−T = aT · ω (7)

�η,R−T = �η

aT
(8)

The factor aT is calculated with the WLF equation according to the temperature T (Equation (9)). Tref
is the chosen reference temperature, C1,aT and C2,aT are two constants. The factor aT is equal to 1.0 at
Tref .

log aT (T) = −C1,aT · (T − Tref )

C2,aT + (T − Tref )
(9)

The TTSP is applied to the specimen A.0.35-50.R4. In his thesis, Mangiafico defined Tref on 14.2°C and
calibrated C1,aT and C2,aT respectively on 30.86 and 196.084°C. In this way, two unique experimental
curves�E(ωR−T ) and�η,R−T (ωR−T ) are obtained (Figure 2). They represent themaster curves for Tref =
14, 2◦C.

3.4. Analytical modelling of�E(ωR−T) and�η,R−T(ωR−T)

The last step consists to fit the previous experimental master curves �E(ωR−T ) and �η,R−T (ωR−T ).
This action will allow us to predict the variations of the components �E and �η of the VENoL model
according to temperatures and frequencies.

3.4.1. Reduced transition pulsation
The experimental curves�E(ωR−T ) and �η,R−T (ωR−T ) show an inflexion point whose position is given
by the reduced pulsation of the peak of the phase angle (Figure 3). We called it the transition reduced
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Figure 2. Mangiafico’s asphalt concrete – Specimen A.0.35-50.R4 (CMT, 50 μm/m). Plotting of experimental data and application
of the TTSP for the stiffness component�E (top) and the reduced viscosity component�η,R−T (bottom) as a function of the reduced
pulsationωR−T .

pulsation ωR−T ,tr . A change in the performances of the material seems to take place around this point
surely coming from the influence of aggregates but also from the bitumen structure. Indeed, it is now
recognised that the glass transition temperature Tg of bitumen is around −20°C (varies with formula-
tion) and is associated with the maltenes matrix (Lesueur, 2009). But for other authors, there may be
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Figure 3. Mangiafico’s asphalt concrete – Specimen A.0.35-50.R4 (CMT, 50 μm/m). Plotting of experimental data in the graph
‘phase angle ϕE∗ as a function of the reduced pulsation ωR−T ’ with the position of the transition reduced pulsationωR−T ,tr .

a second glass transition temperature around 50–70°C associated with asphaltene aggregates (Mas-
son&Polomark, 2001;Mouazen, 2011). In addition, according toDidier Lesueur, TTSP is less effective at
high temperatures for bitumen.MouhamadMouazen suggested that a secondTTSP shouldbe applied
to correct this because of the interaction of asphaltenes. Thus, it seems that above ωR−T ,tr , the effect
of the maltene matrix might predominate in the asphalt concrete behaviour while below ωR−T ,tr , the
effect of asphaltenes might predominate.

Attempts to calibrate �E(ωR−T ) and �η,R−T (ωR−T ) from sigmoid mathematical equations have
proved unsuccessful. Therefore, it seems difficult to find a mathematical equation that can fit the
entirety of �E(ωR−T ) and �η,R−T (ωR−T ). The most practical solution is to separate each of the curves
in two at the level of ωR−T ,tr and to model them separately. Each part may be modelled with a Car-
reau–Yasuda model equation. For the needs of the modelling to come, ωR−T ,tr is defined at 3.00 ·
10−3rad/s.

3.4.2. Carreau–Yasudamodel
Carreau–Yasuda (CY) model describes the apparent viscosity of a non-Newtonian fluid as a func-
tion of the shear rate γ̇ . It consists of five parameters (Equation (10) and example Figure 4,
blue curve). In frequency analysis, the shear rate is replaced by the pulsation (or frequency) in
Equation (10). The model was first proposed by Pierre Carreau with a = 2 in 1958 (Byron Bird &
Carreau, 1968). Kenji Yasuda then generalised the model in 1979 with a taking any value (Yasuda,
1979).

At a low shear rate (γ̇ � 1/λ), a Carreau–Yasuda fluid behaves as a Newtonian fluid with viscosity
ηup. At intermediate shear rates (γ̇ >∼ 1/λ), a CY fluid behaves as a power-law fluid which depends on
the power index n. At a high shear rate, a CY fluid behaves as a Newtonian fluid againwith the viscosity
ηlow .

η = ηlow + (ηup − ηlow) · [1 + (λ · γ̇ )a]
n−1
a (10)
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Figure 4. Values of a and n used to construct an example representation of the Carreau-Yasudamodel with its symmetries. ηlow =
0Pa.s, ηup = 1Pa.s, λ = 1s.

where, ηlow is the lowerNewtonian plateau (or viscosity at the infinite shear rate) [Pa.s]; ηup is the upper
Newtonian plateau (or viscosity at zero shear rate) [Pa.s]; λ is the characteristic time controlling the
intersectionpositionof theupperNewtonianplateau and the slope [s];n is thepower index controlling
the area in power law (n < 1, identical to that of Ostwald model) [-]; a is the power index describing
the transition between the upper Newtonian plateau and the slope (a > 0) [-].

Besides its main function of describing the viscosity, the CY model is also of great mathematical
interest since it draws a sigmoid in a logarithmic coordinates space with control of the slope n − 1.
However, the lower plateauηlow is not of interest formodelling the�E(ωR−T ) and�η,R−T (ωR−T ) curves.
Thismakes themodelmore interesting since it is nowpossible toobtain its axial symmetries, according
to the vertical axis formed by 1/λ and the horizontal axis formed by ηup, by simply modifying the
signs of its coefficients a and n − 1 (Figure 4). Therefore, it is possible to model with a single type of
mathematical equation all the variations of the curves �E(ωR−T ) and �η,R−T (ωR−T ).

An additional argument in favour of using the CYmodel is found in the differential equation of the
Maxwell model, composed of a spring of elasticity E and a dashpot of viscosity η connected in series
(Equation (11)). In frequency analysis, the Maxwell equation can also be written with the CY model to
describe the variations of �E and �η components along ω (Equations (12)–(14)). Equation (14) shows
that the Maxwell model can be written as a Kelvin–Voigt model with variable parameters. The values
of the CY model exponents are defined as such: a = −2, n = 3 for �E and a = 2, n = −1 for �η . We
find for a, the value 2 of Pierre Carreau’s original model.

However, many materials have behaviours that differ from these fixed values, such as bituminous
mixtures. The Generalised Maxwell model, composed of Maxwell elements in parallel, adds Carreau
models (a = 2) with different combinations of E and η to reproduce the asphalt concrete behaviour.
Thus, after a good calibration, an apparent slope and a slope/plateau transition zone are normally
obtainedwhose respective apparent coefficientsa andndiffer from the fixed values. TheVENoLmodel
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overcomes these constraints bydirectlymodifying theparameters of theCYmodel at the source rather
than looking for a combination of rheological models that can reproduce it.

ε̇∗
MX(t) = σ ∗

MX(t)

η
+ σ̇ ∗

MX(t)

E
(11)

{
σ̇ ∗
MX(t) = iω · σ ∗

MX(t)
ε̇∗
MX(t) = iω · ε∗

MX(t)
(12)

σ ∗
MX(t) = E · [1 + (λω)−2]−1 · ε∗

MX(t) + η · [1 + (λω)2]−1 · ε̇∗
MX(t) (13)

With, λ = η
E

σ ∗
MX(t) = �E(ω) · ε∗

MX(t) + �η(ω) · ε̇∗
MX(t) (14)

3.4.3. Modelling
By composing with the CY model and its symmetries, the variations of the stiffness component �E

(green curves on Figure 5) and the reduced viscosity component �η,R−T (red curves) can be defined
as a function of the reduced pulsation ωR−T , below (dotted curves) and above (continuous curves)
the transition reduced pulsation ωR−T ,tr . CY parameters names are changed to correspond with the
VENoL model (Equations (15) and (16)): �E,low,1, �η,R−T ,low,1 and �E,up,2, �η,R−T ,up,2 [MPa, MPa.s] are
respectively lower and upper bounds, λ [s/rad] controls the position of the slope/bound intersection
on the axis ωR−T , n [-] is the slope coefficient and k [-] is the slope/bound transition coefficient. These

Figure 5. Illustration of variations of the stiffness component�E and the reduced viscosity component�η,R−T as a function of the
reduced pulsationωR−T . The peak of the phase angle ϕE∗ gives the transition reduced pulsationωR−T ,tr .
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Table 2. Mangiafico’s asphalt concrete. Modelling parameters of the CY model for the references master curves �E(ωR−T ) and
�η,R−T (ωR−T ) at Tref = 14, 2◦C.

Transition reduced pulsation: ωR−T ,tr = 3.00 · 10−3rad/s

�E(ωR−T) �η,R−T (ωR−T )

ωR−T ≤ ωR−T ,tr ωR−T ≥ ωR−T ,tr ωR−T ≤ ωR−T ,tr ωR−T ≥ ωR−T ,tr
RE,low,1 = 5.0MPa RE,up,2 = 36, 000MPa Iη,R−T ,low,1 = 3.00 · 104MPa.s Iη,R−T ,up,2 = 2.40 · 106MPa.s
λE,R−T ,1 = 7.00 · 100s/rad λE,R−T ,2 = 1.80 · 104s/rad λη,R−T ,1 = 1.00 · 104s/rad λη,R−T ,2 = 1.80 · 102s/rad
kE,1 = 0.210 kE,2 = −0.170 kη,1 = −0.220 kη,2 = 0.250
nE,1 = 3.460 nE,2 = 2.900 nη,1 = 0.040 nη,2 = −0.110

parameters must be calibrated for the reference curve with the condition Tref .

�E(T ,ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if ωR−T ≤ ωR−T ,tr ,

�E,low,1 · [1 + [λE,R−T ,1 · ωR−T ]kE,1 ]
nE,1−1
kE,1

− − − − − − − − − − − − − − − − −−
if ωR−T ≥ ωR−T ,tr ,

�E,up,2 · [1 + [λE,R−T ,2 · ωR−T ]kE,2 ]
nE,2−1
kE,2

(15)

kE,1 > 0; nE,1 > 1; kE,2 < 0; nE,2 > 1

�η,R−T (T ,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if ωR−T ≤ ωR−T ,tr ,

�η,R−T ,low,1 · [1 + [λη,R−T ,1 · ωR−T ]kη,1 ]
nη,1−1
kη,1

− − − − − − − − − − − − − − − − − − −−
if ωR−T ≥ ωR−T ,tr ,

�η,R−T ,up,2 · [1 + [λη,R−T ,2 · ωR−T ]kη,2 ]
nη,2−1
kη,2

(16)

kη,1 < 0; nη,1 < 1; kη,2 > 0; nη,2 < 1
The modelling parameters used for the specimen A.0.35-50.R4 are given in Table 2. The fit of the

components �E and �η,R−T seems correct (Figure 6). The identification of the parameter 1/λ from
experimental data is not always obvious. Indeed, the transition fromone equation to another atωR−T ,tr

occurs even before the slope / bound rounded transition is complete. Therefore, the slope does not
yet appear. It is then necessary to test several values to find the right one.

To be certain of the modelling, it is necessary to check it in the Cole–Cole and Black spaces which
are very sensitive to the variation of parameters (Figure 7). The fit is also correct in these spaces here.
Thus, the use of the CY model and its symmetries is justified.

4. Building the VENoLmodel: adding the influence of strain amplitude

4.1. Use of Graziani’s experimental data

As we already mentioned in the introduction, in a part of their scientific paper published in 2019,
Graziani et al. carried out some DTC tests on asphalt concrete at three different levels of small strain
amplitudes (Graziani et al., 2019). To implement the strain amplitude effects in the VENoLmodel, these
experimental data are reused.

4.1.1. Summary description of the specimen analysed
For the experimentation, the authors considered an asphalt concrete for wearing course produced in
a central asphalt plant. The bitumen binder of penetration grade 70/100 was dosed at 5.3% by the
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Figure 6. Mangiafico’s asphalt concrete – Specimen A.0.35-50.R4 (CMT, 50 μm/m). Plotting of experimental data and fit with the
VENoL(T,ω) model for the stiffness component�E (top) and the reduced viscosity component �η,R−T (bottom) as a function of the
reduced pulsationωR−T . The unused parts of the CY models are plotted in dotted lines.

weight of the final mix. The mixture was characterised by a dense-grading curve with a nominal max-
imum aggregate size of 11mm. Cylindrical specimens were produced using a gyratory compactor to
a diameter of 150mm, before being cored to a diameter of 94mm and cut to a length of 120mm. The
void content for the specimens S1 and S2, whose results are used in this paper, were respectively 9.6%
and 8.5%.
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Figure 7. Mangiafico’s asphalt concrete – Specimen A.0.35-50.R4 (CMT, 50 μm/m). Plotting of experimental data and fit with the
VENoL(T,ω) model in the Cole-Cole (top) and Black (bottom) spaces. The unused parts of CY models are plotted in dotted lines. The
Cole-Cole space is represented with logarithmic coordinates to see the dotted lines.

4.1.2. Summary description of the tests of the data used
Sinusoidal cyclic DTC tests were applied on the specimens using a servo-hydraulic press developed
at the transportation infrastructure laboratory of the Università Politecnica delle Marche. The tests
were carried out in a control stress mode and the applied stress amplitude was adjusted to obtain
the desired steady state strain amplitude, measured with two axial strain gauges at mid-height of the
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specimen. To evaluate nonlinearity, three levels of strain amplitude (15, 30 and 60 µm/m), centred on
zero, were performed with frequency sweeps at five temperatures (0, 10, 20, 30 and 40°C) and five
frequencies (0.1, 0.25, 1, 4 and 12Hz). Therefore, that is a total of seventy-five cyclic tests. Each test
consisted in applying twenty loading cycles, starting from the lower strain level, the lower tempera-
ture, and the higher frequency. A thermal chamber was used to control the temperature during the
tests. A rest period of at least ten minutes was maintained between two consecutive frequencies. The
measured stress and strain signals were used to evaluate the complex moduli. Data obtained for each
test of the specimens S1 and S2 were provided to us by the authors of the paper.

4.2. Application of the VENoLmodel for the reference strain amplitude

Before studying nonlinearity, the experimental data are separated into twogroups. Themedium strain
amplitude of 30 µm/m is considered as the reference ε0,ref . It belongs to the group Complex Modulus
Test (CMT). And the strain amplitudes 15 and 60 µm/m belong to the NonLinearity Tests (NLT).

The method developed in part 3 to build the VENoL(T,ω) model is applied to the CMT. The ref-
erence temperature Tref is taken equal to 20°C. The TTSP is applied with the WLF equation. The
coefficients C1,aT and C2,aT are respectively defined equal to 13.6 and 92.8°C for the two specimens
S1 and S2. These WLF parameters were defined by Graziani et al. in their scientific paper. They are
the same parameters for the three different strain amplitudes because the TTSP applies within the
NLVE region (see section 1.1). The experimental master curves of �E and �η,R−T for Tref = 20◦C and
ε0,ref = 30µm/m become the frame of reference. They are fitted with the CY model (Equations (15)
and (16)). Themodelling parameters used for the specimens S1 and S2 are given in Table 3. The transi-
tion reduced pulsation ωR−T ,tr is fixed at 3.00 · 10−2rad/s for the specimen S1 and at 6.00 · 10−3rad/s
for the specimen S2. Below ωR−T ,tr , there are not enough experimental points; the fits are therefore
partially assumed. The fits of the components �E and �η,R−T seems correct, as we can check it in
the Cole–Cole space (Figure 8). Using different experimental data confirms the method developed in
part 3.

In this Figure 8, the experimental data for the two specimens are quite different although they have
the same composition. The two experimental curves have a similar shape and only seem to differ by
one scale factor. This differencemay be explained by their void content; the specimen S1 is less dense
than the specimen S2. During the analyticalmodelling process, the fit was first performed on the spec-
imen S2. The experimental data for the specimen S1 was then calibrated using the same parameters
kE , nE and kη , nη , but varying the parameters ωR−T ,tr , λE,R−T , λη,R−T and RE,low , RE,up, Iη,R−T ,low , Iη,R−T ,up.
As kE , nE and kη , nη are shape coefficients, it would appear that the shape of the curve is uniquely
related to the viscoelastic behaviour of the bituminous binder. The parameters ωR−T ,tr , λE,R−T and
λη,R−T influence the position of the curves of the stiffness and reduced viscosity components �E and
�η,R−T according to the reduced pulsation. And the parameters RE,low , RE,up and Iη,R−T ,low , Iη,R−T ,up on

Table 3. Graziani’s asphalt concrete – Specimens S1 and S2. Modelling parameters of the CYmodel for the referencemaster curves
�E(ωR−T ) and �η,R−T (ωR−T ) at Tref = 20◦C and ε0,ref = 30µm/m.

�E(ωR−T ) �η,R−T (ωR−T )

S1 Transition reduced pulsation: ωR−T ,tr = 3.00 · 10−2rad/s
ωR−T ≤ ωR−T ,tr ωR−T ≥ ωR−T ,tr ωR−T ≤ ωR−T ,tr ωR−T ≥ ωR−T ,tr
RE,low,1 = 80.0MPa RE,up,2 = 23, 100MPa Iη,R−T ,low,1 = 1.80 · 103MPa.s Iη,R−T ,up,2 = 5.80 · 105MPa.s

λE,R−T ,1 = 3.90 · 101s/rad λE,R−T ,2 = 1.20 · 103s/rad λη,R−T ,1 = 1.30 · 100s/rad λη,R−T ,2 = 8.30 · 101s/rad
S2 Transition reduced pulsation: ωR−T ,tr = 6.00 · 10−3rad/s

ωR−T ≤ ωR−T ,tr ωR−T ≥ ωR−T ,tr ωR−T ≤ ωR−T ,tr ωR−T ≥ ωR−T ,tr
RE,low,1 = 80.0MPa RE,up,2 = 26, 500MPa Iη,R−T ,low,1 = 1.29 · 104MPa.s Iη,R−T ,up,2 = 2.63 · 106MPa.s

λE,R−T ,1 = 2.00 · 102s/rad λE,R−T ,2 = 4.40 · 103s/rad λη,R−T ,1 = 1.10 · 101s/rad λη,R−T ,2 = 3.30 · 102s/rad
Both kE,1 = 0.300 kE,2 = −0.166 kη,1 = −0.550 kη,2 = 0.260

nE,1 = 1.946 nE,2 = 2.290 nη,1 = 0.330 nη,2 = −0.085
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Figure 8. Graziani’s asphalt concrete – Specimens S1 and S2 (CMT). Plotting of experimental data in the Cole-Cole space and fit
with the VENoL(T,ω) model.

their bounds. Thus, the granular skeleton seems to impact the position of the curves of�E and �η,R−T

according to the reduced pulsation as well as on their scale.

4.3. Observation of the nonlinearity effect on experimental data

The experimental points of the NLTs and the referential CMT are quite distinct in the graphic�E(ωR−T )

facilitating observations (Figure 9, top). Thus, it appears that the variations of�E for each strain ampli-
tude levels seem to follow identical shapes but shifted depending on theωR−T axis. They seem to tend
towards the same limit value of �E at high reduced pulsation. Therefore, it could be interesting to set
up a translation factor aA (‘A’ for amplitude) based on the same principle as the coefficient aT of the
TTSP.

However, due to the rapid evolution of �η,R−T (power law), it is difficult to make a further observa-
tion since the data for each amplitude are too tight in the logarithmic plot (Figure 9, bottom). We need
to look at another graph.

The observation of experimental data in the Cole–Cole space allows us to understand that the
establishment of aA is not sufficient to describe the nonlinearity effect (Figure 10). Indeed, the coeffi-
cient aT , whose aA is based on the same structure, only allows the points to be slid along themodelled
curveof theCMT.However, nonlinearity also influences theheight of the curve, itmeansonly the imag-
inary part. To apply this effect, it is necessary to create a second translation factor, named bA, acting
only on �η,R−T .

4.4. Creating a new superposition principle

4.4.1. Time-Amplitude Semi-Superposition Principle
The two translation factorsaA andbA definedpreviously form the Time-Amplitude Semi-Superposition
Principle (TASSP). It connects strain amplitude and pulsation. As for the factor aT with the TTSP, the
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Figure 9. Graziani’s asphalt concrete – Specimen S2 (CMT, 30 μm/m and NLTs, 15/60 μm/m). Plotting of experimental data and
comparison between CMT and NLTs for the stiffness component �E (top) and the reduced viscosity component �η,R−T (bottom)
according to the reduced pulsationωR−T . Fitting of the CMT at ε0,ref = 30µm/mwith the VENoL(T,ω) model.

factor aA intervenes on the reduced pulsation ωR−A and on the reduced viscosity component �η,R−A

(Equations (17) and (18)). The factor bA is a correction coefficient that only affects �η,R−A (Equation
(18)). That is why the term semi-superposition is used. The factors aA and bA are equal to 1.0 at ε0,ref .

ωR−A = aA · ω (17)
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Figure 10. Graziani’s asphalt concrete – Specimen S2 (CMT, 30 μm/m and NLTs, 15/60 μm/m). Plotting of experimental data in the
Cole-Cole space and comparison between CMT and NLTs. Fitting of the CMT at ε0,ref = 30µm/mwith the VENoL(T,ω) model.

�η,R−A = �η

aA · bA (18)

4.4.2. Time-Temperature-Amplitude Semi-Superposition Principle
The combination of the TTSP and the TASSP gives the Time-Temperature-Amplitude Semi-
Superposition Principle (TTASSP). It is characterised by the translation factors aTA (Equation (19)) and
bA. For the reference conditions, aTA and bA are equal to 1.0. The combination allows us to calculate
the reduced pulsation ωR−TA (Equation (20)) and the reduced viscosity component �η,R−TA (Equation
(21)).

aTA = aT · aA (19)

ωR−TA = aTA · ω (20)

�η,R−TA = �η

aTA · bA (21)

4.4.3. Evolution of Equations (15) (�E) and (16) (�η,R−T )
The CMT at 20°C and 30 µm/m of each specimen is the frame of reference for the TTASSP. The param-
eters names resulting from the CY model (Equations (15) and (16)) defining the stiffness and viscosity
components �E and �η evolve but their values remain the same since aTA and bA are equal to 1.0 for
the referential conditions (Table 4).

4.5. Identification of TASSP factors laws

4.5.1. Calculation of the values of aA,exp(ε0) and bA,exp(ε0)
By applying a couple of shift factors aA and bA to the CMT modelling, it is possible to find the results
of a NLT modelling at the desired amplitude. However, the variation laws aA(ε0) and bA(ε0) must be
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Table 4. VENoL(T,ω,ε0) model. Evolution of the parameters naming of the CY model defining the stiffness and viscosity compo-
nents�E and �η according to the principle used.

Parameters TTSP TTASSP

Transition reduced pulsation [rad/s] ωR−T ,tr ωR−TA,tr
Stiffness component – Parameter 1 controlling the position of the curve on the axisω [s/rad] λE,R−T ,1 λE,R−TA,1
Stiffness component – Parameter 2 controlling the position of the curve on the axisω [s/rad] λE,R−T ,2 λE,R−TA,2
Viscosity component – Lower bound [MPa.s] �η,R−T ,low,1 �η,R−TA,low,1
Viscosity component – Parameter 1 controlling the position of the curve on the axis ω [s/rad] λη,R−T ,1 λη,R−TA,1
Viscosity component – Upper bound [MPa.s] �η,R−T ,up,2 �η,R−TA,up,2
Viscosity component – Parameter 2 controlling the position of the curve on the axis ω [s/rad] λη,R−T ,2 λη,R−TA,2

identified. For each strain amplitude and each experimental point (T , ω), it is therefore necessary to
calculate a pair of experimental factors aA,exp and bA,exp. They are isolated from Equations (15) and (16)
to which Table 4 has been applied. Then, the factors are estimated by applying Equation (22) followed
by (23).

aA,exp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if �E,exp ≤ �E(ωR−TA,tr),

1
λE,R−TA,1·ωR−T ,exp

·
[[ �E,exp

�E,low,1

] kE,1
nE,1−1 − 1

] 1
kE,1

− − − − − − − − − − − − − − − − − − −
if �E,exp ≥ �E(ωR−TA,tr),

1
λE,R−TA,2·ωR−T ,exp

·
[[ �E,exp

�E,up,2

] kE,2
nE,2−1 − 1

] 1
kE,2

(22)

bA,exp =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if aA,exp · ωR−T ,exp ≤ ωR−TA,tr ,

�η,R−T ,exp
�η,R−TA,low,1·aA,exp · [1 + [λη,R−TA,1 · aA,exp · ωR−T ,exp]kη,1 ]

− nη,1−1
kη,1

− − − − − − − − − − − − − − − − − − − − − − − − − − −
if aA,exp · ωR−T ,exp ≥ ωR−TA,tr ,

�η,R−T ,exp
�η,R−TA,up,2·aA,exp · [1 + [λη,R−TA,2 · aA,exp · ωR−T ,exp]kη,2 ]

− nη,2−1
kη,2

(23)

For specimen S2, the dispersion of experimental factors aA,exp and bA,exp according to ωR−T does not
seem to follow any particular trend (Figure 11). The same observation has been obtained for specimen
S1. Thus, the factors seem to be independent of temperature and frequency for small strains. For each
factor and strain amplitude, a constant is therefore defined by taking the median (value displayed on
the graphs). The median is chosen because, unlike the average, it is much less influenced by extreme
results. But the averagewas also calculated, and the values obtainedwere almost equal to themedian.
This methodology was also applied to the experimental data at 30 µm/m to verify the good fit of the
CMTmodelling; aA,exp and bA,exp must be close to 1.00 for this amplitude. The results are correct.

4.5.2. Verification of the superposition effect on the norm of the complex stiffnessmodulus with
aA,exp(ε0) and bA,exp(ε0)
Multiplying the reduced pulsationωR−T by the factor aA gives the x-axisωR−TA. A correctionmust also
bemadeon the y-axis. |E∗

R−A| is the reducednormof the complex stiffnessmodulus (Equation (24)). It is
‘reduced’ because bymultiplyingωR−TA with�η,R−TA, the influence of the factor bA stays present. If we
apply these operations for the specimen S2 at 15, 30 and 60 µm/mwith their respective experimental
coefficients aA (1.463, 1.000 and 0.518) and bA (0.947, 1.000 and 1.061), we obtain a single curve on the
graph |E∗

R−A|(ωR−TA) (Figure 12). All the points overlap on the CMT at 30 µm/m for the specimen S2
validating the values calculated. This verification was also performed with the phase angle ϕE∗ , which
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Figure 11. Graziani’s asphalt concrete – Specimen S2 (CMT, 30 μm/m and NLT, 15/60 μm/m). Dispersion of the TASSP translation
factors aA,exp (top) and bA,exp (bottom) according to the reduced pulsation ωR−T . Plotting of experimental data and the median
(dotted lines).

is correct.

|E∗
R−A| =

√
�E

2 +
(

ω · �η

bA

)2

(24)
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Figure 12. Graziani’s asphalt concrete – Specimen S2 (CMT, 30 μm/m and NLT, 15/60 μm/m). Plotting of experimental data for the
reduced norm of the complex stiffness modulus |E∗

R−A| as a function of the reduced pulsationωR−TA . The CMT at ε0,ref = 30µm/m
was modelled with the VENoL(T,ω) model.

4.5.3. Calibration ofWLF-type equations
The average median values of aA,exp and bA,exp at 30 and 60 µm/m for the specimens S1 and S2
are plotted in a graph as a function of the strain amplitude ε0 (Table 5, Figure 13). As with the
Zeng et al. (2001)’s coefficient aγ , we found the WLF equation appropriate to fit the variations of
experimental values aA,exp and bA,exp according to ε0 (Equations (25) and (26)). The use of these
equations requires defining a reference amplitude ε0,ref , which is 30 µm/m in this study. C1,aA,
C2,aA and C1,bA, C2,bA are constants parameters (Table 6). The factors aA and bA are equal to 1.0
at ε0,ref .

log aA(ε0) = −C1,aA · (ε0 − ε0,ref )

C2,aA + (ε0 − ε0,ref )
(25)

log bA(ε0) = −C1,bA · (ε0 − ε0,ref )

C2,bA + (ε0 − ε0,ref )
(26)

Table 5. Graziani’s asphalt concrete – Specimens S1 and S2. Experimental values obtained for the TASSP translation factors aA,exp
and bA,exp .

S1 (median) S2 (median) Average median

Strain amplitude [μm/m] aA,exp bA,exp aA,exp bA,exp aA,exp bA,exp

15 1.526 0.942 1.463 0.947 1.495 0.945
30 (reference) 1.000 1.000 1.000 1.000 1.000 1.000
60 0.487 1.081 0.518 1.061 0.503 1.071
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Figure 13. Graziani’s asphalt concrete. Variation of the TASSP translation factors aA and bA according to the strain amplitude ε0.
Plotting of experimental factors and fit with two WLF-type equations.

Table 6. Graziani’s asphalt concrete. Parameters of the WLF-type equations deter-
mining the evolution of the TASSP translation factors aA and bA .

Parameters aA,WLF bA,WLF

Reference amplitude [m/m] ε0,ref = 3.00 · 10−5 ε0,ref = 3.00 · 10−5

Parameter 1 [-] C1,aA = 3.200 C1,bA = −0.108
Parameter 2 [m/m] C2,aA = 2.90 · 10−4 C2,bA = 8.00 · 10−5

4.6. Application of the TASSP

4.6.1. Prediction of nonlinear tests
The joint application of the VENoLmodel (Equations (15) and (16), Table 4) and TTASSP (Equations (9),
(19), (20), (21), (25) and (26)) to the specimen S2 at the reference conditions Tref = 20◦C and ε0,ref =
30µm/m allows us to obtain the prediction of NLTs results at different strain amplitudes (Figure 14).
The results confirm the creation of the TASSP because the predictions are excellent at 15 and 60 µm/m.
We can express a critical opinion concerning the prediction with high reduced pulsation at the level
of the return of the curves in the Black space. The predicted curves do not pass perfectly through the
experimental points at 15 and 60 µm/m (Figure 14, bottom). However, the number of experimental
data at this level is too small to be able to conclude on the dispersion of experimental results or the
imprecision of the modelling.

4.6.2. Prediction of strain amplitude rise tests
With the VENoL(T,ω,ε0) model, some Strain Amplitude Rise Tests (SART) can be analytically modelled.
It consists to increase the strain amplitude of 0 to 100 µm/m over the first 50 cycles. SARTs reproduce
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Figure 14. Graziani’s asphalt concrete – Specimen S2 (CMT, 30 μm/m and NLTs, 15/60 μm/m). Plotting of experimental data and fit
with the VENoL(T,ω,ε0) model in the Cole-Cole (top) and Black (bottom) spaces.

the beginning of fatigue tests on bituminous mixtures, whose a strain amplitude rise is done to reach
the desired amplitude. Over only 50 cycles, we consider that there are no effects of self-heating and
thixotropy.

The SARTs are applied for different couples temperature-frequencywith the VENoLmodel parame-
ters determined for the specimen S1. Results are superimposed in the Cole–Cole spacewith CMTs and
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Figure 15. Graziani’s asphalt concrete – Specimen S1 (CMT, 30 μm/m and NLTs, 15/60 μm/m). Overlay in the Cole-Cole space of
modelledCMT (30 μm/m),modelledNLTs (0/100 μm/m) andmodelled SARTs (0–100 μm/mover 50 cycles, for different temperatures
at 12 Hz) with the use of the VENoL(T,ω,ε0) model. To compare with the modelled SARTs, some experimental data targeted at the
same temperatures and frequencies from CMT and NLTs at 15/30/60 μm/m are plotted. To verify the TTSP, one test is modelled at
20°C, 12 Hz and another one at 7.7°C, 0.1 Hz.

NLTs to see thenonlinearitydirection fordifferent couples temperature-frequency (Figure15). Because
the shift factor aA decreases when amplitude increases, the nonlinearity direction follows a decrease
in the reduced pulsation. With this type of test, nonlinearity effects on the norm of the complex stiff-
nessmodulus |E∗| and thephase angleϕE∗ canbe also observed at fixed temperatures and frequencies
(Figure 16). |E∗|decreases almost linearlywhen amplitude increaseswhileϕE∗ increases almost linearly
above20 µm/m. The results tendencies are remarkably similar to theexperimentalworksof Phan (Phan
et al., 2017, especially figures 4, 5 and 11 from Phan’s paper).

The LVE strain limits are deduced from the modelled SARTs by reading the strain amplitude for
which the norm of the complex stiffness modulus decreased to 95% of its initial value. These limits
εLVE limit are plotted according to the reduced pulsation ωR−T at the reference temperature of 20°C in
Figure 17. For both specimens S1 and S2, the curves obtained are similar. The graph shows that this
limit increases at high frequency and low temperatures, as is mentioned in the literature because the
upper bound of the norm of the complex stiffness modulus is reached. As asphalt concretes also have
a lower bound, the LVE strain limit increases at low frequency and high temperature. The inflexion
point is located at the same reduced pulsation as the peak of the phase angle.

5. Discussion

5.1. Range of application of the VENoLmodel

Themodelling of CMTswith the VENoL(T,ω) model has been confirmed for two different experimental
data sources (Mangiafico and Graziani). They were obtained with asphalt concrete of different for-
mulations (bitumen respectively of grade 35/50 and 70/100, continuous grading curve 0/14mm and
dense grading curve 0/11mm), whose cylindrical specimen of different dimensions (D-75 x H-150mm
andD-94 x H-120mm)were testedwith DTC tests developed in two different countries (ENTPE, France
andUniversità Politecnica delleMarche, Italia). ForMangiafico, CMTswere conducted at temperatures
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Figure 16. Graziani’s asphalt concrete – Specimen S1 (CMT, 30 μm/mandNLTs, 15/60 μm/m). Evolution of the normof the complex
stiffness modulus |E∗| (top) and the phase angle ϕE∗ (bottom) during modelled SARTs (0–100 μm/m over 50 cycles, for different
temperatures at 12 Hz) with the use of the VENoL(T,ω,ε0) model. To compare with the modelled SARTs, some experimental data
targeted at the same temperatures and frequencies from CMT and NLTs at 15/30/60 μm/m are plotted. To verify the TTSP, one test is
modelled at 20°C, 12 Hz and another one at 7.7°C, 0.1 Hz.

ranging from −25 to 40°C and frequencies from 0.001 to 10Hz. For Graziani, from 0°C to 40°C and 0.1
to 12Hz. Likely, the VENoL model may be correct at a larger range of temperatures, such as −40 to
60°C for the same frequencies as previously.

The creation of the TASSP has been proven for two specimens, but only for one experimental data
source (Graziani). In the literature, there are several papers about nonlinearity due to the strain ampli-
tude, but to our knowledge, Graziani et al. are the only ones who have provided almost complete



240 L. COULON ET AL.

Figure 17. Graziani’s asphalt concrete – Specimens S1 and S2. Evolution of the modelled LVE strain limit εLVE limit according to the
reduced pulsationωR−T at the reference temperature of 20°C.

curves in the Cole–Cole space for different strain amplitudes: 15, 30 and 60 µm/m. The TASSP applies
for this small range. Nevertheless, the modelled decrease of the norm of the complex stiffness mod-
ulus as a function of strain amplitude in Figure 16 is in agreement with the experimental evolutions
observed in the literature with larger ranges. Therefore, the TASSP may apply from 10 to 120 µm/m,
and maybe higher. However, the modelling for ωR−T ≤ ωR−T ,tr is only a prediction since the experi-
mental points do not exceed the peak of the phase angle. Consequently, the TASSP will need to be
verified with other data.

5.2. Comparison between the VENoLmodel and themodels listed in the introduction

Figure 18 summarises the composition of the VENoL(T,ω,ε0) model, which has been built for use with
cyclic dynamic loadings. In total, twenty-two parameters (including two for the TTSP and four for the
TASSP) are required to reproduce the NLVE behaviour.

Figure 18. Summary of the VENoL(T,ω,ε0) model.
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The number of parameters of the VENoLmodel seems large at first sight since if we are interested in
the LVE behaviour, VENoL(T,ω) model uses eighteen parameters (including two for the TTSP) whereas
the 2S2P1D model requires only nine parameters (including two for the TTSP). However, the 2S2P1D
model does not simulate perfectly at high temperature and low frequency, unlike the VENoL model.
To make a fair comparison, the VENoL model must therefore be modified to the same level as the
2S2P1D model. From the equations of the stiffness and viscosity components �E and �η (Equations
(15) and (16)), only those that are above the transition reduced pulsationωR−T ,tr should be considered,
and the parameter E0, lower bound or low frequency stiffness limit, should be added to the stiffness
component equation. Consequently, the VENoL model consists of eleven parameters (including two
for the TTSP), which is only twomore than the 2S2P1Dmodel. In comparison, the generalisedMaxwell
andgeneralisedKelvin–Voigtmodels require at least thirty parameters to have anequivalent accuracy.

On the other hand, the number of parameters for the VENoL model can vary according to require-
ments. For example, if we desire to reproduce the behaviour of asphalt concrete only above the
transition reduced pulsation ωR−T ,tr , ten parameters (including two for the TTSP) are needed. With
the generalised Kelvin–Voigt model, by adding a Kelvin–Voigt element, all the set of parameters must
be redefined, which is not the case with the VENoL model.

In frequency analysis,modelling theNLVEbehaviourwith theVENoL(T,ω,ε0)model ismore accurate
and complete than thenonlinearmodels listed in Section 1.2.2. Nevertheless, other rheologicalmodels
could achieve equally good accuracy using the TASSP. Indeed, as for the TTSP, the TASSP is a principle
independent of the structure of the VENoL model and could be applied to any rheological model as
long as the real and imaginary parts can be dissociated. It should also be noted that the identification
of the TASSPwasmade possible by the practicality of the structure of the VENoLmodel, since from the
equations of stiffness and viscosity components�E and �η (Equations (15) and (16)), pulsation can be
isolated to observe the effects of strain amplitude, which is difficult with rheological models from the
literature.

This study also improves on the initial observations of Zeng et al. (2001). It confirms the existence
of a shift factor at the frequency level as used in their nonlinear model. Thus, the shift factor aA is
assimilated to the shift factoraγ fromZenget al. Both factors decreasewith increasing strain amplitude
and are calibrated with a WLF-type equation. We also show here that if aA applies to the frequency,
it also applies to the viscosity as for the TTSP. However, the model of Zeng et al. is very imprecise
regarding the phase angle. This problem is corrected in this paper by adding a vertical shift factor bA
on the imaginary part of the complex stiffness modulus. Another difference concerns the reference
amplitude of the TASSP, which is left to the user’s choice, whereas in Zeng et al. it is the origin of the
strain amplitude (zero).

It is difficult to make a comparison between the TASSP and the nonlinear viscoelastic constitutive
equations fromSchapery (1969) since theyweredevelopeddifferently. Nevertheless, the shift factoraA
may be assimilated to aε and the correction factor bA may be linked to the three nonlinear parameters
he, h1, h2.

5.3. Relationship between dynamic and static behaviour

If we have to define a drawback of the VENoL model, it is currently only applicable to cyclic dynamic
loading. It has not yet been studied for static loadings such as creep and relaxation tests. However,
there may be bridges between the frequency and time analysis. For example, Equation (6) is already
currently written as a function of time if only the real part is considered, but the stiffness and viscosity
components aswell as the TASSP are defined as a functionof thepulsation.We recall that thepulsation
is equal to the ratio of the angular velocity (maximum velocity of the signal) to the signal amplitude.
Therefore, the pulsation of a sinusoidal strain can bewritten as the ratio of the strain rate amplitude ε̇0
by the strain amplitude ε0 (Equation (27)). Furthermore, webelieve that thesemaximum loading levels
might influence the structural state of the bitumen (liquid/solid) whichwould control the stiffness and
viscosity of the asphalt concrete. It is true that during a frequency cycle, the strain and the strain rate
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vary between zero and their maximum, but for too high frequencies, the structural state of the asphalt
might not have time to evolve and would remain dependent on the maximum loading levels. Thus,
frequency analysis would have the advantage of isolating a structural state of the material according
to a strain rate level and a strain level per frequency. Consequently, the stiffness and viscosity com-
ponents, as well as the TASSP, might be defined more generally in terms of time parameters: strain
and strain rate. However, principles should also be established to take into account the influence of
loading and resting times. For example, if strain amplitude rise tests last too long, a duration effect will
appear: the norm of the complex stiffness modulus decrease will accelerate (thixotropy?). For strain
amplitude decay tests, a recovery effect will appear in addition: delayed recovery of complexmodulus
while thematerial structure rearranges itself. Therefore, the evolution of the complexmodulus will be
different between an amplitude rise test and a decay test, as shown in Mangiafico et al. (2018). Such
an analysis would require a significant experimental campaign.

ω = ε̇0

ε0
(27)

5.4. Variations of aA and bA according to ε0

In part 4.5.3, we have assumed that aA,WLF and bA,WLF took a finite value at 0 µm/mandwere fittedwith
WLF-type equations. But some clues show us another possibility at low strain amplitude (between 0
and 20 µm/m). At high amplitude, they seem to move towards a limit.

Regarding Figure 13, above 30 µm/m, the factor aA,WLF , fitted on the experimental data, seems to
follow a trend equal to the inverse of the strain amplitude and normalised according to the reference
strain amplitude. Thenumber ‘2’ is given to this second supposed trendofaA (Equation (28), Figure 19).
In fact, according to Equation (27), it is possible to obtain the same pulsation for different values of the
strain amplitude and the strain rate amplitude. Indeed, to pass from 60 to 30 µm/m, the strain ampli-
tude has to be divided by two; according to Equation (27), this is also equivalent to divide the strain
rate amplitudeby two to keep thepulsation constant. On the contrary, going from15 to30 µm/m leads
to a doubling of the strain rate. Here we find the variations of the coefficient aA,2. For a constant pul-
sation, the proportional evolution of the strain amplitude and the strain rate amplitudemight explain
the variations of the translation coefficient aA. However, below 30 µm/m, the closer the amplitude is to
0 µm/m, the further aA,WLF seems to move away from aA,2 (Figure 19). Indeed, by using Equation (28)
for 15 and 60 µm/m, we should respectively find aA,2 equal to 2.00 and 0.50 but, with the procedure of
part 4.5, we had calculated the averagemedian aA,exp equal to 1.495 and 0.503 for respectively 15 and
60 µm/m. This correspondswith 60 µm/mbut not with 15 µm/m. Consequently, a second unidentified
effect might occur in parallel of aA,2 at very low amplitude to obtain aA,WLF .

aA,2(ε0) = ε0,ref

ε0
(28)

Secondly, another discussion concerns the prediction of the shift factor bA. In part 4.5.3, we have
assumed that bA took a finite value at 0 µm/m. Nevertheless, we think that bA,2 might evolve very
quickly approaching 0 µm/m to reach the value zero (Figure 19). Application of this law bA,2 with aA,WLF

would have strong modelling repercussions at low amplitude. The consequence would be an imag-
inary part equal to zero at 0 µm/m for each temperature-frequency pair. The real part would only
depend on the temperature level (Figure 20). Approaching 0 µm/m, the norm of the complex stiff-
ness modulus would increase until reaching the value of the real part, and the phase angle ϕE∗ would
decrease rapidly until reaching 0° for each couple temperature-frequency.

Nevertheless, despite some justifications, these trends about aA,2 and bA,2 at low strain amplitudes
will remain hypotheses as long as this behaviour has not been confirmed or invalidated with other
experimental data. Currently, it is preferable to consider the WLF-type equations of aA,WLF and bA,WLF

to define the TASSP (Equations (25) and (26)).
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Figure 19. Graziani’s asphalt concrete. Another assumed variation of the TASSP translation factors aA and bA according to the strain
amplitude ε0.

Figure 20. Graziani’s asphalt concrete – Specimen S1 (CMT, 30 μm/m and NLTs, 15/60 μm/m). Overlay in the Cole-Cole space of
modelledCMT (30 μm/m),modelledNLTs (2/100 μm/m) andmodelled SARTs (0–100 μm/mover 50 cycles, for different temperatures
at 12 Hz) with the supposed variations aA,WLF and bA,2 from the TASSP. The cross marks of the modelled SART at 7.7°C and 0.1 Hz are
plotted every 2 μm/m.
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5.5. Physical meaning of aA and bA

In this study,wehave shown that the shift factoraA from the TASSP affects the sameparameters (ω and
�η) as the shift factors aT from the TTSP. We believe that these coefficients aT and aA might reflect the
change of structural state of the material at the macroscopic level: fluidification (aTA decreases) and
solidification (aTA increases). The coefficient bA does not act in the same direction as the coefficient
aA. It might be considered a true nonlinear parameter because it changes the shape of the viscoelastic
path. It might reflect different mechanisms within the microstructure between the influence of the
strain amplitude and the temperature, which would impact the viscosity at the macroscopic level.

6. Conclusion

In this paper, an inventory of existing rheologicalmodelswas first carriedout tohighlight theproblems
encountered in reproducing the LVE behaviour of asphalt concrete in dynamic analysis.

• The DRSMs require too many rheological elements to accurately reproduce the complex stiffness
modulus at different temperatures and frequencies.

• The 2S2P1D model gives a correct simulation for only nine parameters, despite inaccurate mod-
elling at high temperature and low frequency. However, fractional derivatives are difficult to
implement in numerical simulations.

For these reasons, a different design of LVE model was proposed. It was given the name of ‘VENoL
model’.

• It is made up of two elements connected in parallel: a stiffness component �E related to the strain
and a viscosity component �η related to the strain rate.

• These two components vary according to the pulsation at a reference temperature and are cali-
brated by using the Carreau–Yasuda model. The application of the TTSP makes the change from
one temperature to another possible. Eighteen parameters are needed.

• The calibration of the parameters was confirmed for two different experimental data sources (Man-
giafico and Graziani). The modelling of CMTs was accurate, in particular at high temperature and
low frequency.

• The VENoL model can be reliably applied for a temperature range of −40 to 60°C and a frequency
range of 0.001 to 12Hz.

• Furthermore, based on a Kelvin–Voigt structure, the VENoL model can be easily implemented as a
contact law in numerical simulations using DEM.

The second point concerns the addition of nonlinearity to the VENoL model, resulting from
variations in strain amplitude. Research on NLVE modelling was first carried out in the literature.

• Three types of research were found: shift factors for the conversion from one stress or strain ampli-
tude to another, nonlinear rheological models calibrated with the norm of the complex stiffness
modulus and the phase angle, variation laws of the 2S2P1D model parameters according to strain
amplitude. However, the models developed for the dynamic analysis are either incomplete or
inaccurate.

To meet this need, a new principle was developed in this paper based on the same concept as the
TTSP: the Time-Amplitude Semi-Superposition Principle (TASSP).

• It is defined by two translation factors aA and bA. As for the shift factor aT from the TSSP, aA influ-
ences the same parametersω and�η . However, bA impacts only�η . It is a true nonlinear parameter
because it changes the shape of the viscoelastic path.
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• When strain amplitude increases, aA and bA respectively decreases and increases towards a limit. At
low strain amplitude (between 0 and 20 µm/m), their behaviour is not yet identified. We currently
assume that they take a finite value at the origin 0 µm/m, but it is possible that bA moves until zero.

• The TTSP and the TASSP add together to form the TTASSP:multiplying aT by aA gives the coefficient
aTA.

• The calibration of the TASSP has been verified for two specimens, but only for one experimen-
tal data source (Graziani). The joint application of the VENoL model and the TTASSP gives precise
modelling of unmatched quality until now.

• The TASSP can be applied for small strain amplitudes from 10 to 120 µm/m.
• The existence of nonlinear shift factors due to various strain amplitudes confirms previous obser-

vations in the literature.
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