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Abstract In many applications of geometric processing, the border of a continuous
shape and of its digitization (i.e. its pixelated representation) should be matched.
Assuming that the continuous-shape boundary is locally turn bounded, we prove
that there exists a mapping between the boundary of the digitization and the one
of the continuous shape such that these boundaries are traveled together in a cyclic
order manner. Then, we use this mapping to prove the multigrid convergence of
perimeter estimators that are based on polygons inscribed in the digitization. Fur-
thermore, convergence speed is given for this class of estimators. If, moreover, the
continuous curves also have a Lipschitz turn, an explicit error bound is calculated.

Keywords digitization · integral curvature · turn · Jordan curve · perimeter
discrete estimation,

1 Introduction

The estimation of a geometric feature of an object from its picture is required
in several fields. One of the issues in this process is the discretization due to
the image acquisition that reduces the information necessary to the estimation.
Therefore, dedicated estimators are mandatory and their properties should be5

proved or evaluated. That is the problematic of geometric estimation in discrete
geometry. Characteristics whose dimension is that of the ambient-space like area
in the plane, have estimators which have been proved to be accurate (see for
instance Theorem 2.2, section 2.4.2 [9] or Theorem 8 [10]). For characteristics
with dimensions lower than that of the ambient space, like perimeter or curvature10

in the plane, the accuracy of the proposed estimators is proved on specific curves
[21], [31], [10], [7], [5], or illustrated on examples [30], [20], [6], [11] [4,32]. The aim
of this paper is to prove the accuracy of perimeter estimation (in a sense to be
defined) for a wide class of estimators under some hypotheses on the shapes.

In the sequel of the article, we focus on the estimation of perimeter for shapes15

homeomorphic to a disk or equivalently to length estimation of Jordan curves.
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We provide here a brief overview of the perimeter estimation in discrete geometry.
Length estimation methods can be based on a tangent estimation [4,14], or consist
in splitting the digital boundary into patterns (small sequences of boundary pixels)
and summing the lengths associated to each pattern. In the latter class, the choice20

of the pattern size determines a classification on perimeter estimation methods.
One can distinguish three classes: the local estimators for which the pattern size
is constant, that is, it does not depend on the curve nor on the grid step; the
Semi-Local and Non-Local estimators for which the pattern size depends only on
the grid step, but not on the curve; and the adaptive ones for which the number of25

pixels in each pattern is determined by the estimation algorithm from the discrete
curve. There are two types of adaptive length estimators, the Maximal Digital
Straight Segments (MDSS) and the Minimal Length Polygons (MLP).

The evaluation of the accuracy of the perimeter estimators is made through
their application on curve examples [12,4], on curve classes [14] or by verifying an30

asymptotic property so-called the multigrid convergence: the estimation error has
to tend towards 0 when the grid step tends to 0. Let’s take a look to this property
on the three estimator classes described above. Even if the local estimators are
the easiest to use, they do not verify the multigrid convergence property for an
important amount of curves [29]. On one hand, adaptive estimators have been35

proved to be multigrid convergent on convex curves [10]. On the other hand the
proofs are difficult to generalize because of the adaptability of the algorithms
to each curve. Nevertheless, for adaptive estimators on curves of class C3 with
positive curvature, it has been proved in [32] that the asymptotic pattern pixel
number tends to infinity and its real size tends to 0. Keeping this behaviour in their40

definition (without being adaptive), the Semi-Local estimators, respectively the
Non-Local estimators have been proved to be multigrid convergent for functions
of class C2 [20], respectively Lipschitz functions [21]. But these results have been
obtained on graphs of functions, not on curves. As the Non-Local estimators is an
attempt to be a unified framework for adaptive and semi-local estimators [21], it45

seems relevant to extend it to planar curves. Nevertheless, the results depend on
the estimators but also on the classes of the estimated curves. These classes are
detailed in the next paragraph.

The length estimation error is always given for an estimator class on a class
of curves (Table 1). In order to perform a geometric estimation on a curve, and50

taking into account the small quantity of information contained in its digitization,
the complexity of the curve should be upper bounded. Geometric hypotheses on
the continuous curve are needed to control this quantity of information. These
geometric hypotheses should be invariant by rigid transformation and determine
the grid step for which the digitization will encompass enough information to per-55

form geometric estimation. One of the most used hypothesis in discrete geometry
is the par(r)-regularity. It was introduced by Pavlidis in [25], its definition was
rephrased by Serra in [26], and by Latecki et al. in [16]. Par(r)-regular curves ver-
ify some regularity hypotheses. In particular, polygons are not par-regular. There
exist several attempts to generalize par(r)-regularity in order to include shapes60

with spikes: half-regularity [28], r-stability [22], quasi(r)-regularity [24], the µ-
reach [3]. But none of them excludes artifacts of the continuous curve that prevent
accurate length estimation. In addition to these original papers, the reader can
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Estimator Class of curves
Proof of multi-
grid conver-
gence

Rate of conver-
gence

MDSS

convex C3 with
positive curva-
ture

Thm 5.36 [14] O(h1/3)

convex polygons Thm 12 [10] O(h)

GC-MLP convex curves
for Jordan digi-
tization scheme
Thm 4.15 [27]

O(h)

AS-MLP convex polygon Thm 2 [2] O(h)

Non-local esti-
mator

graph of Lips-
chitz function

Cor 1 [21] -

graph of C1,1

function
Cor 2 [21] O(Mh

1 + h
Mh

1

)

MDSS graph of Lips-
chitz function

Thm 8 [21] -

Table 1: The table gives the proved worst-case rate of convergence of several
estimators on a specific class of curves. When not specified the convergence is
studied for the Gauss digitization scheme. The class C1,1 gathers functions whose
derivative are Lipschitz.

find a little more detailed presentation of the above notions in our previous paper
about locally turn bounded curves [18]. 1.65

In this article, we aim at providing a proof of multigrid convergence for some
perimeter estimators and to bound their worst-case error on a wide class of Jordan
curves including both regular curves and polygons. In order to define such a class
of curves, we choose to use a criterion based on the turn of the curve, which is a
generalization of the integral of the curvature along the curve [1]. Indeed the turn70

is the amount by which a curve deviates from being a straight line. In this article,
we consider two families of curves: the curves having a turn being a Lipschitz
function of their length and the curves whose small arcs have a bounded turn
(locally turn-bounded curves, see Definition 1). The notion of local turn-bounded
curve (LTB-curve) was introduced in a previous work [18].75

Let us introduce the digitization process used in this article. Given a shape S
and a grid step h, the Gauss digitization of S denoted by Digh(S), is the discrete
subset of S∩hZ2. The reconstruction of S is the Minkowski sum Digh(S)⊕P where
P = [−h/2, h/2]2. A boundary element of a digitized shape S, usually called a bel

is composed of a pair of 4-adjacent grid points, one lying outside the shape and80

the other lying inside the shape, or on its boundary see Figure 1.

Since bounding the error of a non-local estimator consists in comparing the
length of the curve and the length of a polygon whose vertices are derived from
the digitization, an important step is to associate the edges of the polygon to arcs
partitioning the continuous curve. In other words, we want to define a mapping85

from the ordered set of the digitization bels to an ordered sequence of points on the
continuous curve C. Furthermore, in order to guarantee the multigrid convergence,
each bel has to be close to its image. In [13], the whole continuous curve is asso-
ciated point by point to the boundary of its reconstruction using the projection

1 Other hypotheses can be chosen for curves that are graphs of a function: the function or
its derivatives can be required to be Lipschitz (see [21])
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border of S

points of Digh(C)

points not in Digh(C)

reconstruction of S

bels

points associated to bels

Figure 1: Each bel is associated to an intersection point of itself and the border
of the shape S. In the general case, there is no guarantee that the cyclic order on
bels implies a cyclic order on the border of the shape. In Section 3, we will prove
that locally turn bounded curves makes it possible to define such a monotonic
association.

×

y1

×

y2

×

p

Figure 2: ([14, Figure B.2]) In blue and orange a Jordan curve C, in red the
boundary ∂h(C) of the reconstruction of its interior. The projection on the curve C
restricted to ∂h(C) is represented by the green arrows. The points y1 and y2 have
the same image p by the projection on the curve. The set of points of ∂h(C) having
at least two preimages by the projection is represented in orange. When a point y
in ∂h(C) moves from left to right, this orange part is traveled three times.

to nearest point defined in [8]. This projection is well-defined only for sets having90

a positive reach, that is, for par-regular curves. Moreover, this projection is onto
but not order-preserving (see Figure 2) even if the length of the “non-injective”
part of the projection on C can be upper bounded [13]. Notice that this step is not
always necessary: for small classes of curves as the convex polygons, the bounding
of estimation error is based on other arguments (see [10]).95
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Our contribution is twofold. The first and main contribution of the article is to
define a mapping (Definition 6) from bels to points on the curve and to prove that
this mapping is order-preserving. Besides, we show that the mapping partitions
the curve in arcs of limited turns. The whole section 3 is dedicated to this proof.
The second contribution is the length estimation for locally turn-bounded curves.100

We prove the multigrid convergence of some Non-Local estimators (Theorem 2 and
Theorem 3). We also provide rates of convergence depending on the mean and
maximal size of patterns. Moreover we give an explicit upper bound of the error
of estimation for LTB curves with Lipschitz turn in order to enable a practical use
at a fixed resolution.105

2 Background: Hypotheses on the continuous shape and some

consequences

In this section, we recall the definition and the main properties of locally turn-

bounded curves. All this material comes from our previous article [18].

2.1 Turn110

In this section, we recall the definition of the turn and some of its properties. The
main reference is the book of Alexandrov and Reshetnyak [1]. Nevertheless, the
reader will find in our previous article [18] two pages presenting these properties
with some comments and precise references inside the book.

Generally, the convergence of geometrical estimators is given under analytical115

hypothesis on the continuous curve. In most of the cases, the continuous curve is
supposed to be twice differentiable. But as noticed in [1]:

“It should be remarked that differential geometry commonly studies only the
curves obeying certain conditions of regularity. These conditions are imposed by
the requirement that the apparatus of differential calculus be applied, but they120

are hardly justified in a geometrical sense.” In this article, we choose to study
geometrical features of the continuous curve based on the turn. In order to be able
to consider both polygons and regular curves, we use the definition of the turn
given in [1], [23]. But beforehand, let us clarify some notations.

– For practical reasons, a sequence of points (ai) of a closed curve is indexed by125

the quotient group Z/NZ. This allows for instance to use the equality aN = a0.
In particular, this notation will be used for the vertices of a polygon. The subset
{i, i + 1, ..., j} of Z/NZ is denoted by [[i, j]] and #[[i, j]] stands for the cardinal
of [[i, j]].

– The angle between two vectors ~u and ~v is denoted by (~u,~v) ((~u,~v) ∈ R/2πZ).130

The geometric angle between two vectors ~u and ~v, or between two directed
straight lines oriented by ~u and ~v, is denoted by ∠(~u,~v). It is the absolute
value of the reference angle taken in (−π, π] between the two vectors. Thus,
∠(~u,~v) ∈ [0, π]. Given three points x, y, z, we also write x̂yz for the geometric
angle between the vectors x− y and z − y.135

We now give the definition of the turn.
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Figure 3: The turn of the inscribed polygon is the sum of green angles. The turn
of the blue Jordan curve it the supremum of turn of inscribed polygons

– The turn κ(L) of a polygonal line L = [xi]
N−1
i=0 is defined by:

κ(L) :=
N−2∑
i=1

∠(xi − xi−1, xi+1 − xi) .

– The turn κ(P ) of a polygon P = [xi]i∈Z/NZ is defined by (see Figure 3):

κ(P ) :=
∑

i∈Z/NZ

∠(xi − xi−1, xi+1 − xi) .

– In the rest of the paper, we write Ca,b for an arc of curve between the points a
and b; moreover, the topology on the curve and its arcs is the topology induced
on the curve, therefore, an open arc C̊ is the arc C minus its endpoints.

– A sequence (aj) of points of a simple closed curve C forms a chain if for each140

pair (i, j), the intersections of the two open arcs of C from ai to aj with the set
{ak} are exactly the subsets {ak}k∈[[i+1,j−1]] and {ak}k∈[[j+1,i−1]].

– A polygonal line (or a polygon) is said to be inscribed in C if its ordered sequence
of vertices forms a chain of C.

– The turn κ(C) of a simple curve C (respectively of a Jordan curve) is the supre-145

mum of the turn of its inscribed polygonal lines (respectively of its inscribed
polygons).

The turn has the following properties2

Property 1 ([1])

– The turn coincides with the integral of the usual curvature on C2 curves.150

– (Fenchel’s Theorem) The turn of a Jordan curve is greater than or equal to
2π. The equality case occurs if and only if the interior of C is convex.

– Every curve of finite turn has left-hand and right-hand tangent vectors el(c)
and er(c) at each of its points.

– For any arc Ca,b of finite turn containing a point c,

κ(Ca,b) = κ(Ca,c) + κ(Cc,b) + ∠(el(c), er(c)).

2 About these properties, the reader can find in [18] some comments and more precise
references.



Monotonic sampling of a Jordan curve from its digitization and application 7
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+ pixel on

border of the

the shape C

Figure 4: The curve on the left has a thin spike avoiding all the centers of pixels.
Alike, we can build curves having arcs arbitrarily far from their Gauss digitization.
Even if the curve stay close to its digitization, it can oscillate a lot around its
digitization. Such artifacts can induce for instance an arbitrarily big difference
between the length of the curve and the length of its digitization.

– For any Jordan curve C of finite turn containing a point c,

κ(C) = κ(C \ {c}) + ∠(el(c), er(c)).

2.2 Local turn-boundedness155

We introduced in [17] a new local geometric feature based on the turn. It consists
in locally bounding the turn of the curve in order to forbid the artifacts depicted in
Figure 4. This new feature allows us to consider a wider class than the par-regular
curves usually used for estimation in discrete geometry.

Definition 1 (LTB curves [17]) A Jordan curve C is (θ, δ)-locally turn-bounded160

((θ, δ)-LTB) if, for any two points a and b in C such that the Euclidean distance
d(a, b) < δ, the turn of one of the arcs of the curve C delimited by a and b is less
than or equal to θ.

In particular it forbids the angular points in C of turn greater than θ, i.e. points c
for which ∠(el(c), er(c)) > θ (see [17, Proposition 3]).165

Hereafter, we recall the properties of the LTB-curves that will be used in this
paper.

The first property links the parameter δ of a LTB curve with the diameter of
the curve.

Property 2 ([18], Lemma 1) The diameter of a closed (2π/3, δ)-LTB curve is at170

least δ.

Notice that two distinct points of a Jordan curve delimit two arcs of the curve.
To distinguish these two arcs, we introduced in [17] the notion of straightest arc.

Property 3 ([18, Lemma 2]) Let C be a (π/2, δ)-LTB curve. Let a, b be points of C
such that d(a, b) < δ. Then there exists a unique arc of C delimited by the points175

a and b and whose turn is less than or equal to π
2 .
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Definition 2 (Straightest arc, [18, Definition 6]) Let C be a (π/2, δ)-LTB curve.
Let a, b be points of C such that d(a, b) < δ. The unique arc of C delimited by the
points a and b and whose turn is less than or equal to π

2 is called the straightest arc

between a and b and noted Ca,b.180

Since the notion of straightest arc is a key tool in this article, we set θ = π/2
for the rest of the paper and we write δ-LTB instead of (π/2, δ)-LTB.

Property 4 ([18, Proposition 4]) Let C be a δ-LTB curve. Let a, b be two points of C
such that d(a, b) < δ. The straightest arc Ca,b between a and b is included in the
disk of diameter [a, b].185

Local turn-boundedness can be understood as a constraint on the thickness
of the interior of the curve C. Indeed, the intersection of C with any open disk
centered in a point of C and of radius less than or equal to δ is path-connected.

Property 5 ([18], Proposition 5) Let C be a δ-LTB Jordan curve and a ∈ C. Then,
for any ε ≤ δ, the intersection of C with the open disk B(a, ε) is path-connected190

and is therefore an arc of C.

From Property 5, we derive that, in each ball of radius δ/2 centered on a LTB
curve point a, the Euclidean distance to a increases along the curve.

Property 6 ([18, Proposition 12]) Let C be a δ-LTB curve. Let γ : [0, tM ) → C be
an injective parametrization of the curve C and tm ∈ (0, tM ) be such that the195

arc γ([0, tm]) is included in B(γ(0), δ2 ). Then, the restriction of the function t 7→
‖γ(t)− γ(0)‖ to [0, tm] is increasing.

The preservation by the digitization process of topological properties as con-
nectedness, or manifoldness, requires to discretize continuous objects with suffi-
ciently tight grids. In the framework of LTB curves, this is expressed by the notion200

of grid, and also of square, compatible with a (LTB) curve presented here (Definition
3).

Definition 3 ([18], Definition 9 ) Let C be a δ-LTB curve. A grid with step h, or
a square of side length h, is said to be compatible (with the curve C) if h is strictly

smaller than min(
√
2
2 δ, 12 diam(C)).205

Any δ-LTB curve yields 4-connected and well-composed discretizations [15] on
compatible grids.

Property 7 ([18], Proposition 9) Let C be a δ-LTB curve. Then, the Gauss digitiza-
tion of C on any compatible grid is 4-connected and well-composed.

The value of θ ≤ π
2 and

√
2h < δ are tight. Two counterexamples are shown in210

Figure 5.
The constraint on the curvature of a LTB curve makes it possible to describe

with accuracy the behavior of such a curve with respect to compatible grid pixels.
This was expressed in [18] through the notion of “arc passing through” a pixel.

Definition 4 ([18], Definition 8 and Proposition 7) Given a LTB curve C and215

a compatible square T , there exists a maximal (for the inclusion) straightest arc
of C with endpoints in T . It is called the T -straightest arc of C and it its denoted
by CT (see Figure 6) .
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θ0 >
π
2

h

h

h

h

δ <
√

2h

: interior : border : exterior

Figure 5: [18, Figures 14,15] Two examples of curve not compatible with the
grid and having a not well-composed Gauss digitization, that is a Gauss digitiza-
tion with a “cross configuration”. A cross configuration is a square of side-length
h having two diagonally opposed vertices in the Gauss digitization and the two
others not belonging to the Gauss digitization. The black triangles designate in-
teger points belonging to the Gauss digitization of the blue shape, the gray circle
designates an integer point belonging to the border of the blue shape (hence be-
longing to the Gauss digitization) and the white squares designate two integer
points outside the Gauss digitization.

•
a

•
b

•a

•b

•
a

Figure 6: On each of the three blue curves, the square-straightest arc is depicted
by a continuous line whereas the rest of the curve is dashed. On the left and on
the middle the square-straightest arc is delimited by the points a and b, on the
right, the square-straightest arc is reduced to the point a.

Be aware that we have changed the designation of the arc passing through T from
[18] into T -straightest arc .220

The T -straightest arc has the following localization property.

Property 8 ([18], Proposition 6) Let C be a δ-LTB curve and T be a compatible
square. Then, the T -straightest arc of C is included in the swelling of T which
is the union of the four disks whose diameters are the sides of T (see Figure 7).
Furthermore, the complement of CT in C, the open arc C \CT , does not intersect225

T .

Thanks to the notion of T -straightest arc, we are able to locally distinguish
exterior points from interior points. The notion of swelling of T corresponds to the
swollen set of T defined in [18],we change the designation in this article.
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a

b

h/2

h

•
•

Figure 7: The straightest arc of the square is included in the swelling of the square.

Property 9 ([18], Proposition 8) Let C be a δ-LTB Jordan curve and T be a com-230

patible square. Let a, b be the endpoints of the T -straightest arc of C. Two vertices
of the square T are in the same connected component of R2 \ C if and only if they
are in the same connected component of T \ [a, b] and they do not lie on C.

The following property considers the case when the T -straightest arc contains
a vertex of the square T .235

Property 10 ([18], Lemma 4) Let C be a δ-LTB Jordan curve and T be a compatible
square. Suppose that the square T has a vertex v lying on C. Then, either this vertex
v is an endpoint of the T -straightest arc of C, or the T -straightest arc is wholly
included in the two sides of T having v for endpoint.

We end this section about local turn boundedness by a new result that is just240

a set of technical improvements of some of the properties mentioned above. These
new statements are used in Section 3.

Lemma 1 Let Ca,b be a subarc of a δ-LTB Jordan curve such that d(a, b) < δ.

(a) The arc Ca,b is the straightest arc between a and b if and only if it is included in

the disk whose diameter is the straight segment [a, b].245

(b) If the arc Ca,b is the straightest arc between a and b, then,

< el(a), er(a) > +κ(Ca,b)+ < el(b), er(b) > ≤
π

2
.

Proof

(a) The “only if” part of the assertion is stated in Property 4. The “if” part results
from Property 2. Indeed, if Ca,b is included in the disk D whose diameter is
[a, b] where d(a, b) < δ, by Property 2, the other arc between a and b, say Cb,a,250

is not included in D. Thus, from the “only if” part, Cb,a is not the straightest
arc from a to b. As, according to Definition 2, the straightest arc exists, it is
Ca,b.

(b) The idea is to slightly extend the arc Ca,b on both sides so as to include the
points a and b in its interior while keeping the distance between the extremities255

under the threshold value δ. Nevertheless, we have to justify that the extended
arc is still a straightest arc.
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•

a

•

b

•
••a′

• b′

< ε
< ε

< ε

Figure 8: The proof of Lemma 1 b) consist on extending the straightest arc between
a and b into an arc Ca′,b′ between a′ and b′ and then in showing that C \ Ca′,b′ is
not included in the disk of diameter [a′, b′].

So, let a′ and b′ be the extremities of the extended arc Ca′,b′ : a
′ /∈ Ca,b, b

′ /∈
Ca,b, Ca′,b′ = Ca′,a ∪Ca,b ∪Cb,b′ . Let ε = (δ − d(a, b))/4. We choose a′ and b′

such that d(a, a′) < ε and d(b, b′) < ε (see Figure 8). Then, d(a′, b′) < δ − 2ε.260

Furthermore, it can be proved that the distance between the center of the open
disk D whose diameter is [a, b] and the open disk D′ whose diameter is [a′, b′]
is less than ε. Thanks to the triangle inequality, we derive that D′ is included
in the open disk D+ whose center is the midpoint of [a, b] and whose diameter
is δ. Furthermore, the straightest arcs Ca′,a and Cb,b′ are included in D+ by265

the choice of ε and Property 4. Then, Ca′,a ∪ Ca,b ∪ Cb,b′ ⊂ D+, D′ ⊂ D+

but the whole curve C is not included in D+ (by Property 2). It comes that
C \
(
Ca′,a ∪ Ca,b ∪ Cb,b′

)
is not included in D′ and for this reason cannot be

the straightest arc from a′ to b′. Hence Ca′,a ∪ Ca,b ∪ Cb,b′ is the straightest
arc between a′ and b′. ut270

3 Digitization based partition of a LTB curve

One main objective of this article is to map the boundary of a discretized object
onto the continuous original object thanks to small displacements of the discrete
boundary while keeping the order on the boundary of the discrete object. This is
the purpose of this section.275

Note that the proofs given in Section 3 rely on the properties of LTB curves
recalled in Section 2.2.

3.1 Back-digitization

We begin by some vocabulary and notations that will be used throughout Section 3.
Let p ∈ R2 and h ∈ (0,+∞). We denote by Pp the square p ⊕ P where P =280

[−h/2, h/2]. When p ∈ hZ2, we say that Pp is a pixel and when p ∈ (h/2, h/2)+hZ2,
we say that Pp is a dual pixel. Observe that the vertices of a dual pixel all have
integer coordinates.

Given a Jordan curve C surrounding a shape S and given a grid step h, we
recall that a bel (for “boundary element”) is an ordered pair of 4-adjacent grid285

points, the first point lying inside the shape, or on its boundary and the second
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point lying outside the shape. By abuse of language, a bel is identified with the
segment linking its two points. The set of all the bels obtained from Digh(S) is
denoted Belh(C).

A dual pixel containing a bel is called a boundary dual pixel, or bdp for short.290

Obviously, a bel always belongs to two bdps. Conversely, it is plain that in a
well-composed digitization, a bdp contains exactly two bels (see Figure 9). That
way, the graph whose vertex set is Belh(C) and whose edges are the pairs of bels
belonging to a same dual pixel is regular with degree 2. If the graph Belh(C)
is connected, Belh(C) may be equipped with a cyclic order and when we need to295

consider this cyclic order, we put Belh(C) = (bi)i∈Z/NZ. We derive from Property 7
that if the grid is compatible with C, Belh(C) is equipped with a cyclic order.

(a) (b) (c)

points of Digh(S)

points not in Digh(S)

reconstruction of S

border of the reconstruction

bels

Figure 9: Let S be a shape homeomorphic to a closed disk. Its boundary is a Jordan
curve, we call it C. (a) Each edge of the boundary of the reconstruction of the shape
S separates a grid point outside S and one adjacent grid point in S. Then the bels
of Digh(S) and the edges of the reconstruction are in one-to-one correspondence.
(b) and (c): When the digitization of S is well-composed, no bdp contains the
cross configuration (c). Then each bdp contains exactly two bels (b).

From Jordan’s Curve Theorem, we derive that each segment in Belh(C) inter-
sects the curve C. The notion of back-digitization defined hereafter corresponds to
a mapping from bels to such intersection points. Since we want our mapping to300

preserve the bel order but we cannot impose injectivity (see Figure 10), we have
to relax the notion of chain (see Section 2.1) to sequences of curve points having
several consecutive occurrences of the same point.

Definition 5 (semi-chain) Let N ≥ 1. A sequence (ξk)k∈Z/NZ of points of a
simple closed curve C forms a semi-chain if for each pair (i, j), the intersections of305

the two closed arcs of C between ξi and ξj with the set {ξk}k∈Z/NZ are the subsets
{ξk}k∈[[i,j]] and {ξk}k∈[[j,i]] (see Figure 11 a). Given a δ-LTB curve C, a semi-chain
(ξk)k∈Z/NZ of C is a sampling semi-chain if, for any k ∈ Z/NZ, d(ξk, ξk+1) < δ and
the open straightest arc of C between ξk and ξk+1 does not intersect {ξk}k∈Z/NZ.

An example of a semi-chain not being a sampling semi-chain is given in Figure310

11 b. Observe that any Jordan curve point sequence whose cardinal is less than 4
is a semi-chain.

The two following lemmas give some properties of (sampling) semi-chains.

Lemma 2 Let C be δ-LTB curve and (ξk)k∈Z/NZ be a semi-chain of C. If ξi = ξj for

some i, j ∈ Z/NZ then {ξk}k∈[[i,j]] or {ξk}k∈[[j,i]] is a singleton.315
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bi+1

bi+2

•

•

•

Configuration A

bi+1

bi+2

bi+3

•
•

•

Configuration B

•

curve C

points of Digh(C)

points not in Digh(C)

bels

back-digitizations

Figure 10: Consecutive bels (left: 2 bels, right: 3 bels) have to be back-digitized
on the same point of the curve.

•ξ0

•
ξ1

•
ξ2

•
ξ3

• ξ4

•
ξ5

•
ξ6

•
ξ7 = ξ8

•
ξ9

•ξ10

(a)

•ξ2

•

ξ1

•

ξ3

< δ

< δ

< δ

(b)

Figure 11: a) The sequence (ξk)10k=0 is a semi-chain of the blue Jordan curve. For
instance, the intersections of the set {ξk}k∈Z/11Z with the two arcs of the blue curve
between ξ3 and ξ8 are the subsets {ξ8, ξ9, ξ10, ξ0, ξ1, ξ2, ξ3} and {ξ3, ξ4, ξ5, ξ6, ξ7, ξ8}
(since ξ7 = ξ8). b) The sequence (ξk)3k=1 is a semi-chain that is not a sampling
semi-chain. Any two points in {ξ1, ξ2, ξ3} are at distance strictly less than δ, but
the open straightest arc between ξ1 and ξ3 contains ξ2.

Proof This is a direct consequence of the definition of a semi-chain applied to the
arcs between ξi and ξj .

Lemma 3 explains the designation “sampling” semi-chain. Indeed, given a
sampling semi-chain (ξi)i∈Z/NZ, each point p of the curve C is on a straightest
arc between two consecutive points of this semi-chain. Thereby, and because the320

straightest arc between two points a and b is included in the disk whose diameter
is [a, b] (Property 4), each point p of the curve C is at distance less than δ of a
point of (ξi)i∈Z/NZ. In the following lemma, the standard notation AtB denotes
the disjoint union.
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Lemma 3 Let C be a δ-LTB curve and (ξk)k∈Z/NZ be a sampling semi-chain of C
such that the cardinal of the set {ξk} is greater than 2. Then,

C = {ξk}k∈Z/NZ t
⊔

k∈Z/NZ

C̊ξk,ξk+1
.

In particular, for any (i, j) ∈ Z/NZ, the arcs of C from ξi to ξj are

{ξk}k∈[[i,j]] t
⊔

k∈[[i,j]]
C̊ξk,ξk+1

and {ξk}k∈[[j,i]] t
⊔

k∈[[j,i]]
C̊ξk,ξk+1

.

Proof Firstly, observe that, thanks to the assumption d(ξk, ξk+1) < δ, the arc325

C̊ξk,ξk+1
is well-defined.

– First, let us prove that the sets C̊ξi,ξi+1
, C̊ξi′ ,ξi′+1

and {ξk}k∈Z/NZ are dis-

joint whenever i 6= i′. Let i and i′ be two different classes in Z/NZ. Since
the sequence (ξk)k∈Z/NZ is a sampling semi-chain of C, the open arc C̊ξi,ξi+1

does not contain any ξk, k ∈ Z/NZ. Therefore, C̊ξi,ξi+1
∩ {ξk}k∈Z/NZ = ∅330

and C̊ξi,ξi+1
∩ C̊ξi′ ,ξi′+1

= ∅ if {ξi, ξi+1} 6= {ξi′ , ξi′+1}. Assume that {ξi, ξi+1} =

{ξi′ , ξi′+1}. If ξi = ξi+1, then we immediately have C̊ξi,ξi+1
∩C̊ξi′ ,ξi′+1

= ∅. Now,

by contradiction, assume that ξi 6= ξi+1 (and thus, ξi′ 6= ξi′+1). Two cases are
possible : either ξi = ξi′ and ξi+1 = ξi′+1, or ξi = ξi′+1 and ξi+1 = ξi′ .
– In the first case, C is the union of the two closed arcs between ξi and ξi′ . As335

ξi = ξi′ , the two arcs are {ξi} and C. Since i+ 1 ∈ [[i, i′]] and i′ + 1 ∈ [[i′, i]],
by definition of a semi-chain, one of the two points ξi+1 and ξi′+1 belongs
to the arc between ξi and ξi′ reduced to {ξi}. Since ξi+1 = ξi′+1, {ξi, ξi+1}
is a singleton. Contradiction !

– In the second case (ξi = ξi′+1 and ξi+1 = ξi′), by Lemma 2, we derive that340

either {ξk}k∈[[i,i′+1]] or {ξk}k∈[[i′+1,i]] is a singleton and either {ξk}k∈[[i′,i+1]]

or {ξk}k∈[[i+1,i′]] is a singleton. There are four possibilities which can be
reduced to two thanks to the symmetry swapping i and i′. If {ξk}k∈[[i,i′+1]]

and {ξk}k∈[[i′,i+1]] are singletons, we derive that i = i′+1 and i+1 = i′ (for
we assumed ξi+1 6= ξi and ξi′+1 6= ξi′). It comes that i = i+2 in Z/NZ. That345

is, N = 2: a contradiction. If {ξk}k∈[[i,i′+1]] and {ξk}k∈[[i+1,i′]] are singletons,
we derive that i = i′ + 1 and the set {ξk}k∈[[i+1,i′+1]] = {ξk}k∈[[i+1,i]] is a
pair. Since, {ξk}k∈[[i,i+1]] is also a pair, we get again N = 2.

– The arc
⊔
k∈Z/NZ C̊ξk,ξk+1

t{ξk}k∈Z/NZ, which can be written as {ξ0}tC̊ξ0,ξ1 t
{ξ1} t · · · t C̊ξ−1,ξ0 , is a simple closed arc of C that is not reduced to a350

singleton for the cardinal of the semi-chain (ξk) is greater than 1. Then,⊔
k∈Z/NZ C̊ξk,ξk+1

t {ξk}k∈Z/NZ is equal to C.
– Alike, the arcs

⊔
k∈[[i,j]] C̊ξk,ξk+1

t {ξk}k∈[[i,j]] and
⊔
k∈[[j,i]] C̊ξk,ξk+1

t {ξk}k∈[[j,i]]
are simple arcs of C between ξi and ξj and they are not equal if {ξk}k∈[[i,j]] 6=
{ξk}k∈[[j,i]]. So, by contradiction, assume that {ξk}k∈[[i,j]] = {ξk}k∈[[j,i]]. Since355

#{ξk} > 2, there exist ` ∈ [[i, j]] and `′ ∈ [[j, i]] such that ξ` = ξ`′ and ξ` /∈
{ξi, ξj}. Finally, applying Lemma 2 to ξ` and ξ`′ , we get ξi = ξ` or ξj = ξ`: a
contradiction. ut

We can now define the main notion provided by this article.
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(a)

•

continuous shape S

grid points of Digh(S)

grid points not in Digh(S)

border of the reconstruction ∂h(C)

bels bk

intersection points ξ(bk)

• •

•

•

•

•

•

•

•

(b)

• •
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•

••

•

•

•

•

•

•

•

(c)

consecutive bels!

Figure 12: Two bels are consecutive if they are edges of the same BDP (Boundary
Dual Pixel). The order on the bels is considered relatively to the boundary ∂h(C)
of the reconstructed shape, but the order on the points ξ(bk) back-digitized from
bels is considered relatively to the continuous Jordan curve C. Example (a): a
simple case: there is a unique mapping ξ linking bels to their green points, it is
injective and the sequence of green points form a semi-chain of C. Example (b):
There are several back-digitizations ξ and for some of them, the sequence of back-
digitized bels does not form a semi-chain of C. Example (c): There is a unique
back-digitization ξ and the sequence of back-digitized bels does not form a semi-
chain (for instance, the green points associated to the two pointed consecutive bels
are not consecutive on the blue curve).

Definition 6 (Back-digitization) Let C be a Jordan curve and h > 0.360

– A map Belh(C) → C is called a back-digitization if for every bel p ∈ Belh(C),
ξ(p) ∈ p

– A back-digitization ξ : (bi)i∈Z/NZ → C is monotonic if (ξ(bi))i∈Z/NZ is a semi-
chain of C.

– If C is a LTB curve, a back-digitization ξ : (bi)i∈Z/NZ → C is a monotonic sampler365

if (ξ(bi))i∈Z/NZ is a sampling semi-chain of C.

As shown in Figure 12, there are curves with non-monotonic back-digitization
or even, with no monotonic back-digitization. Nevertheless, in the sequel of Sec-
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tion 3, we prove the following proposition about the monotonicity of the sampling
under LTB hypothesis.370

Proposition 2 Let C be a δ-LTB curve. On a compatible grid, any back-digitization

is a monotonic sampler.

The proof of Proposition 2 is split into three steps. In the first step, we prove
that some configurations cannot appear in the digitization of a LTB curve (Sub-
section 3.2). In the second step, we define a specific back-digitization called the375

canonical back-digitization and prove it to be a monotonic sampler (Subsection 3.3).
In the third step, we prove that any back-digitization of a LTB curve is a monotonic
sampler (Subsection 3.4). In Subsection 3.5, given a back-digitization ξ, we prove
that tight enough subsequences of (ξ(bi))i∈Z/NZ are also sampling semi-chains.

3.2 Impossible configurations380

The first step of the proof of the back-digitization monotonicity consists in ex-
cluding local configurations in the digitization of a LTB curve on a compatible
grid (Lemma 5). In order to exclude these configurations, we use geometrical ar-
guments based on the turn and, in particular, results about the T -straightest arc
(Properties 8, 9, 10) and introduce Lemma 4 that precises Property 10 in the case385

where the square T is a bdp. Figure 13 illustrates the proof.

Lemma 4 Let C be a δ-LTB Jordan curve. Let T be a bdp compatible with C and

having a vertex v lying on C. If v belongs to a bel of T , then the vertex v is an endpoint

of the T -straightest arc of C.

Proof By contradiction, assume that v is not an end of the T -straightest arc CT .390

Then, by Property 10, the arc CT is included in [a, v, b] and its turn is equal to
π/2 (see Figure 13). Let a and b be the two vertices of T adjacent to v. Let p, q
be the ends of CT , p ∈ (a, v) and q ∈ (v, b]. Since, by the compatibility hypothesis,
the diameter of T is smaller than δ, there exist points close to p in C \T at distance
from q less than δ. Let p′ be such a point (see Figure 13). On the one hand, the395

turn of the arc between p′ and q including the arc CT is greater than π/2. Thus,
it is distinct from the straightest arc between p′ and q. On the other hand, the
straightest arc between p′ and q is included in the disk whose diameter is [p′, q]
(Property 4). Then, the diameter of the curve C is less than δ which contradicts
Property 2. ut400

The purpose of the next lemma is to show that configurations depicted in
Figure 14 cannot appear in the digitization of a LTB curve on a compatible grid.
Notice that other configurations are already excluded by the well-composedness
(Property 7).

Lemma 5 (Impossible configurations) Let C be a δ-LTB curve. Given a grid com-405

patible with C, the configurations depicted in Figure 14 cannot appear in the digitization

of C.

Proof For the first three configurations, let V be the square which is the union of
the four bdp of the configuration. We define an orthonormal coordinate system
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T•p

•

q

•p′

v

a

b
< δ

Figure 13: Grid square T with an exterior vertex (square) and a border vertex
(circle). The configuration is described up to a rigid transformation preserving
hZ2. Any arc containing the T -straightest arcwithout having p for end has its turn
greater than π

2 .

1

0

−1
−1 0 1

Configuration A

1

0

−1
−1 0 1

Configuration B

1

0

−1
−1 0 1

Configuration C

1

0
0 1

Configuration D

1

0
−1 0 1

Configuration E

: interior : border : exterior : border or interior

Figure 14: The configurations are defined up to a rigid transformation preserving
hZ2.

by letting the center of V be the point (0, 0) and the two exterior points be the410

points (1, 0) and (−1, 0). Notice that the border point (0, 0) is an endpoint of each
T -straightest arc of a dual pixel included in V (Lemma 4). Then, the union of the
arcs passing through the four bdp is path connected.

– Configuration A. Let P be one of the four bdp included in V and p be the
endpoint of CP distinct from (0, 0). The point p lies in the boundary of V for415

the segment [(0, 0), p] separates the exterior vertex of P from the interior vertex
of P (Property 9). Notice that the point p does not belong to the swelling of
another bdp of V , since the arc passing through a bdp is included in the swelling
of the bdp. Thereby, CP is not included in another arc passing through a bdp of
V . Then, four distinct arcs of C meet in (0, 0) which contradicts the simplicity420

of the curve C. Thus, on a LTB curve, Configuration A is impossible.
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– Configuration B. Assume that the interior point has (0,−1) for coordinates. On
the one hand, the same arguments as in the first Configuration hold for the
dual pixels P(−0.5,−0.5) and P(0.5,−0.5). On the other hand, the T -straightest
arc of the dual pixel P(−0.5,0.5) is included in the swollen set of P(−0.5,0.5) and425

contains the vertex (0, 1). Hence, it is distinct from the arcs passing through
P(−0.5,−0.5) and P(0.5,−0.5). Thus, three distinct arcs of C meet in (0, 0): on a
LTB curve, Configuration B is impossible.

– Configuration C. From Properties 4, 10 and Lemma 4, the union CP(−0.5,0.5)
∪

CP(0.5,0.5)
of the arcs passing through P(−0.5,0.5) and P(0.5,0.5) is an arc of C con-430

taining the points (0, 1) and (0, 0), and included in the union of the disk of diam-
eter [(0, 1), (0, 0)] with the segment [(−1, 1), (1, 1)]. Moreover, by Property 8, the
intersection of C with P(−0.5,0.5)∪P(0.5,0.5) is included in CP(−0.5,0.5)

∪CP(0.5,0.5)
.

Alike, C ∩ (P(−0.5,−0.5) ∪ P(0.5,−0.5)) ⊆ CP(−0.5,−0.5)
∪CP(0.5,−0.5)

is an arc of C
passing through the points (0,−1) and (0, 0), and included in the union of435

the disk of diameter [(0,−1), (0, 0)] with the segment [(−1,−1), (1,−1)]. Then,
C∩V is an arc of C that separates two exterior points in two distinct connected
components of R2 \ C: on a LTB curve, the configuration C is impossible.

– Configuration D. We define an orthonormal coordinate system by letting the
border point having the coordinates (0, 0) and letting the exterior point having440

the coordinates (1, 1). By Property 9, one end of the P(0.5,0.5)-straightest arc
is on the open bel ((0, 1), (1, 1)) and the other on the open bel ((1, 0), (1, 1)).
This contradicts Property 10. Thus, Configuration D never occurs on a LTB
curve.

– Configuration E. We define an orthonormal coordinate system by letting the445

border point having the coordinates (0, 0), the border or interior points having
the coordinates (0, 1) and (1, 0) and the two exterior points having coordinates
(−1, 0) and (1, 1). Since Configuration D cannot occur, (0, 1) or (1, 0) is a bor-
der point. Let us show by contradiction that actually both points are border
points. Assume for instance that (1, 0) is an interior point (exactly the same ar-450

guments hold for (0, 1)). Then the curve C intersects the open bel ((1, 0), (1, 1))
at a point f . By Lemma 4 (0, 1) is an end of the P(0.5,0.5)-straightest arc.
Then either [(0, 1), f, (0, 0)] or [(0, 1), (0, 0), f ] is a chain of C included in the
P(0.5,0.5)-straightest arc. We derive that the P(0.5,0.5)-straightest arc has its
turn greater than π

2 which is absurd. Hence, (0, 1) and (1, 0) are both bor-455

der points and, by Lemma 4 and Property 10, CP(0.5,0.5)
= [(0, 1), (0, 0), (1, 0)].

Moreover, from Property 5, the intersection of the Jordan curve C with the
closed set B((0, 0), h) equals the polygonal line [(0, 1), (0, 0), (1, 0)]. Then the
intersection of the Jordan curve C with the closed set P(0.5,0.5) ∪ B((0, 0), h)
also equals the polygonal line [(0, 1), (0, 0), (1, 0)]. We derive that the two exte-460

rior points shown in Configuration E lie in two different connected components
of P(0.5,0.5) ∪B((0, 0), h) \ [(0, 1), (0, 0), (1, 0)]. Thereby, the two exterior points

shown in Configuration E lie in two distinct components of R2 \ C which con-
tradicts the Jordan curve theorem. Hence, Configuration E cannot occur on a
LTB curve. ut465
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3.3 The canonical back-digitization is a monotonic sampler

This subsection is devoted to the study of a particular back-digitization, the canon-

ical back-digitization. Thanks to the lemmas established in Subsection 3.2, we will
prove that the back-digitization is a monotonic sampler. Let us now define this
canonical back-digitization.470

Definition 7 (canonical back-digitization) Let C be a LTB curve and (bi)i∈Z/NZ
be a cyclically ordered set of its bels on a compatible grid. Denoting by Ti the bdp

containing both bi and bi+1, the canonical back-digitization ξc associates to each bi
either the unique Ti-straightest arc endpoint lying on bi or the one which is not a
grid point.475

The correctness of Definition 7 is a consequence of the next lemma.

Lemma 6 Let C be δ-LTB curve and T be a bdp on a grid compatible with C. The

endpoints of the T -straightest arc CT lie on the bels of T and conversely each bel of T

contains an endpoint of CT . In particular, if both endpoints of CT belong to a same

bel, one of them is a grid point.480

Proof Let b be a bel of T and pin be its inner-or-border point. If pin is interior, then,
from Property 9, b contains an end-point of CT . If pin lies on C, from Lemma 4, pin
is an end-point of CT . In the case where the two bels share their inner-or-border
point which is an end-point of CT , Property 9 shows that no end-point of CT lies
on the two edges of T that are not bels. If both endpoints of CT belong to b, one485

of them is shared with the other bel of T and therefore is a grid point. ut

Since the digitization is well-composed, the mapping bi 7→ Ti is a one-to-one
correspondence between the bels and the bdps. Nevertheless, the canonical back-
digitization may not be one-to-one since consecutive images of ξc can be equal.
For instance, a point of the curve lying on a grid point may yield three consecutive490

identical images (see Figure 10). The following proposition clarifies this possibility.

Proposition 1 Let C be a LTB curve and (bi)i∈Z/NZ be a cyclically ordered set of

its bels on a compatible grid. Then, if for some i and j in Z/NZ, ξc(bj) lies on the

straightest arc linking ξc(bi) and ξc(bi+1), then either j ∈ [[i−2, i]] and ξc(bj) = ξc(bi)495

or j ∈ [[i+ 1, i+ 3]] and ξc(bj) = ξc(bi+1).

Proof Let (bi)i∈Z/NZ be the cyclically ordered set of bels. Assume that ξc(bj) lies
on the straightest arc linking ξc(bi) and ξc(bi+1) for some j /∈ {i, i + 1}. Then,
ξc(bj) belongs to the Ti-straightest arc where Ti is the bdp containing bi and bi+1.
Hence, it belongs to the swelling of Ti. Since ξc(bj) lies on a bel, that is on an500

edge of the grid, actually, ξc(bj) ∈ Ti. Since Ti is a bdp, Ti has at least an exterior
point for vertex and, since the intersection of a bel bj /∈ {bi, bi+1} with the bdp Ti
is necessarily a vertex of the grid, the border point ξc(bj) is also a vertex of Ti. Let
us prove that one of the bels bi or bi+1 has ξc(bj) for end. By contradiction, assume
that ξc(bj) is not an end of bi nor of bi+1. By well-composedness (Property 7), the505

BDP Ti has exactly two bels for edges. Then, the two edges of Ti having ξc(bj) for
end are not bels. Therefore, their other end is also an interior point. The two other
edges of Ti being bels, the vertex of Ti diagonally opposed to ξc(bj) is an exterior
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Ti

ξc(bj)

bj

bi

bi+1

Figure 15: If neither of the bels bi and bi+1 have ξc(bj) for end, then we recover
Configuration E. The white squares correspond to exterior points, the gray disk
to a point on C, the white diamonds correspond to interior points or points on C.

point. Since bj is a bel, one of its end is an exterior point, then Configuration E

occurs, which contradicts Lemma 5. Then one of the bels bi or bi+1 has ξc(bj) for510

end. Then the border point ξc(bj) is a vertex of an edge of Ti having an exterior
point for the other end, that is a vertex of bi or bi+1. We assume that ξc(bj) ∈ bi
(the case ξc(bj) ∈ bi+1 is similar). We derive from Lemma 4, that ξc(bj) is an
endpoint of CTi . Then, either ξc(bi) = ξc(bj) or ξc(bj) is the second endpoint of
the Ti-straightest arc (by definition of ξc). In the latter case, both endpoints of515

the Ti-straightest arc belong to bi and CTi is included in the disk with diameter
bi (Property 4). Therefore, ξc(bi+1), which lies in both bi+1 and the Ti-straightest
arc is the intersection of bi+1 and the disk with diameter bi which is the grid point
ξc(bj) since the other endpoint of bi is an exterior point. At this stage, we have
proved that520

1. either ξc(bj) = ξc(bi) or ξc(bj) = ξc(bi+1).
2. ξc(bj) is a grid point.

Let bk be one of the bels such that ξc(bk) = ξc(bj) with k ∈ {i, i + 1}. There are
two possibilities: either bk and bj are orthogonal (Figure 16-a) or they are aligned
(Figure 16-b).525

In the first case, bk and bj are two orthogonal bels sharing a vertex, thus
they share a bdp. Since there are exactly two bels per bdp, |k − i| = 1, moreover
j /∈ {i, i+ 1}, then either k = i and j = i− 1 or k = i+ 1 and j = i+ 2.

In the second case bk and bj are aligned. We derive from Lemma 5 (Config-
urations A, B, C) that there is a third bel bk′ having ξc(bj) as extremity. Then530

|k − j| = 2. Thus j ∈ [[i − 2, i + 3]]. If (k, j) = (i, i − 2) or (k, j) = (i + 1, i + 3),
there is nothing left to prove since ξc(bk) = ξc(bj). Otherwise, (k, j) = (i, i+ 2) or
(k, j) = (i+1, i−1). It remains to prove that ξc(bi+2) = ξc(bi+1) or ξc(bi−1) = ξc(bi).
Assume that (k, j) = (i, i + 2) (the case (k, j) = (i + 1, i − 1) is similar) and, by
contradiction, that ξc(bi+1) 6= ξc(bj). By Lemma 4, ξc(bj) is an endpoint of the535

Ti+1-straightest arc. Therefore, from the assumptions and the definition of ξc,
all the endpoints of the Ti-straightest arc and the Ti+1-straightest arc are in bi+1.
Then, by Property 4, CTi ∪CTi+1

is included in the disk D with diameter [ξc(bj), q]
where q is the exterior point of the bel bi+1 (see Figure 16-c). We have a contra-
diction with the simplicity of C and the fact that the arc C \ (CTi ∪ CTi+1

) does540

not intersect Ti ∪ Ti+1 (Property 8). ut

Proposition 1 is the heart of the proof of the monotonicity of the canonical back-
digitization. Corollary 1 is only a formal verification that the result of Proposition
1 coincides with the definition of the monotonicity.
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pbk

bj
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pbk

bj
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bk′

bj

q
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Figure 16: (Proof of Proposition 1) The bels bj and bk share the same image p by
the canonical back-digitization ξc.

Corollary 1 Let C be a LTB curve and (bi)i∈Z/NZ be a cyclically ordered set of its545

bels on a compatible grid. The canonical back-digitization is a monotonic sampler.

Proof In this proof, the cardinal of a subsequence (ξc(bk))k∈[[i,j]] of (ξc(bi))i∈Z/NZ
(i, j ∈ Z/NZ), is the cardinal of the set {ξc(bk)}k∈[[i,j]] and we setM = #ξc(Belh(C))
(Since ξc is not injective, M does not need be equal to N). We assume M ≥ 3 (oth-
erwise, the result is obvious).550

Let us firstly prove that (ξc(bi))i∈Z/NZ is a semi-chain. For any n ∈ [2,M/2+1]∩
N, let Hn be the induction hypothesis: “for any i, j ∈ Z/NZ and any subsequence
(ξc(bk))k∈[[i,j]] of (ξc(bi))i∈Z/NZ whose cardinal is less than n, the two sets resulting
from the intersection of the closed arcs from ξc(bi) to ξc(bj) with ξc(Belh(C)) are
equal to {ξc(bk)}k∈[[i,j]] and {ξc(bk)}k∈[[j,i]]” . Notice that between any two terms555

of the sequence (ξc(bi))i∈Z/NZ there is an arc containing at most bM/2 + 1c terms
of the sequence. Hence HbM/2+1c states that (ξc(bi))i∈Z/NZ is a semi-chain.

– (Case n=2) From Proposition 1, we get that, for any i ∈ Z/NZ, the intersec-
tions of the closed arcs from ξc(bi) to ξc(bi+1) with ξc(Belh(C)) are equal to
{ξc(bk)}k∈[[i,i+1]] (for the straightest arc) and {ξc(bk)}k∈[[i+1,i]] (for the comple-560

mentary arc). It is plain that we can extend this property to closed arcs from
ξc(bi) to ξc(bj) provided that either #{ξk}k∈[[i,j]] ≤ 2 or #{ξk}k∈[[j,i]] ≤ 2. Then
H2.

– Let n ≥ 3. Assume Hn−1. We consider two integers i and j in Z/NZ such that
#{ξc(bk)}k∈[[i,j]] = n. There exists ` ∈ [[i, j]] such that #{ξc(bk)}k∈[[i,`]] = n− 1565

and #{ξc(bk)}k∈[[i,`+1]] = n. We write Ci,`, resp. C`,i, for the arc between
ξc(bi) and ξc(b`) whose intersection with Belh(C) is equal to {ξc(bk)}k∈[[i,`]],
resp. {ξc(bk)}k∈[[`,i]] (we use the induction hypothesis Hn−1). Since ξc(b`+1) /∈
{ξc(bk)}k∈[[i,`]] (by definition of `), ξc(b`+1) lies in the interior of C`,i. Further-

more, by Proposition 1, the open straightest arc C̊ξc(b`),ξc(b`+1) from ξc(b`)570

to ξc(b`+1) does not contain any point of ξc(Belh(C)). Then, Ci,`+1 := Ci,` t
C̊ξc(b`),ξc(b`+1) t {ξc(b`+1)} is an arc from ξc(bi) to ξc(b`+1) whose intersection
with ξc(Belh(C)) is {ξc(bk)}k∈[[i,`+1]].

Alike, the arc C`,i \ ({ξc(b`)} t C̊ξc(b`),ξc(b`+1)) is an arc from ξc(bi) to ξc(b`+1)
whose intersection with ξc(Belh(C)) is {ξc(bk)}k∈[[`+1,i]]. It remains to show575

that the points ξc(bk), k ∈ [[l + 1, j]], are all equal to ξc(bl+1) (indeed ξc(bk),
with k ∈ [[l + 1, j]], could be equal to a ξc(bm) for some m ∈ [[i, l]]). For any
k ∈ [[l + 1, j]], let Pk be the induction hypothesis :“ ξ(bk) = ξ(bl+1)”.
– Pl+1 is obvious.
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– Let k ∈ [[l + 2, j]], assume Pl+1, ..., Pk−1, i.e. ξc(b`+1) = ξc(b`+2) = · · · =580

ξc(bk−1).
• By definition of `, ξc(bk) ∈ Ci,`+1 and ξc(bk) ∈ C`,i. Then,

ξc(bk) ∈ Ci,`+1 ∩ C`,i ∩ ξc(Belh(C)),

= (Ci,` t C̊ξc(b`),ξc(b`+1) t {ξc(b`+1)}) ∩ C`,i ∩ ξc(Belh(C)),

= (Ci,l ∩ Cl,i ∩ ξc(Belh(C))) t {ξc(bl+1)},
= {ξ(bi), ξ(bl), ξ(bl+1)}.

• By contradiction assume that ξc(bk) = ξc(b`). Then, on the one hand,
one of the arc between ξc(b`) and ξc(bk) is a singleton while the other
arc is C. On the other hand, by the induction hypothesis Hn−1, one585

of the arcs between ξc(b`) and ξc(bk) contains exactly two points of
ξc(Belh(C)), ξc(b`) and ξc(b`+1). It follows that the cardinal of ξc(Belh(C))
is 2 which contradicts the assumption M ≥ 3. Thus, ξc(bk) 6= ξc(b`).

• By contradiction assume that ξc(bk) = ξc(bi). Then, on the one hand,
one of the arcs between ξc(b`+1) and ξc(bk) is Ci,`+1. By definition of590

l, this arc contains exactly n points of ξc(Belh(C)) where n ≥ 3. On
the other hand, by the induction hypothesis Pk−1, one of the arcs be-
tween ξc(b`+1) and ξc(bk) contains at most two points of ξc(Belh(C))
while the other arc contains all the points of ξc(Belh(C)). It follows
that the cardinal of ξc(Belh(C)) is n which contradicts the assump-595

tions n ≤ M/2 + 1 and M ≥ 3. Then, ξc(bk) 6= ξc(bi). Since ξc(bk) ∈
{ξc(bi), ξc(bl), ξc(bl+1)}, Pk.

Finally, we derive that ξc(b`+1) = ξc(b`+2) = . . . = ξc(bj).

Then, Ci,`+1 is an arc from ξc(bi) to ξc(bj) whose intersection with ξc(Belh(C)) is

{ξc(bk)}k∈[[i,j]]. Alike, the arc C`,i \ ({ξc(b`)}t C̊ξc(b`),ξc(b`+1)) is an arc from ξc(bi)600

to ξc(bj) whose intersection with ξc(Belh(C)) is {ξc(bk)}k∈[[j,i]]. Then Hn.
Eventually, observe that the sequence (ξc(bk))k∈Z/NZ is a sampling semi-chain.

Indeed, d(bk, bk+1) < δ for any k because the grid is compatible with C and
the straightest arc between ξc(bk) and ξc(bk+1) does not contain any point of
ξc(Belh(C)) by Proposition 1. ut605

3.4 Any back-digitization is a monotonic sampler

We now show that any back-digitization defined on the bel set of a LTB curve is
a monotonic sampler. The heart of this result is brought by the following lemma.

Lemma 7 Let C be a LTB curve and (bi)i∈Z/NZ be a cyclically ordered set of its bels

on a compatible grid. Let ξ be a back-digitization. Then, for any i ∈ Z/NZ, ξ(bi) lies610

on the straightest arc between ξc(bi) and ξc(bi+1).

Proof Let Ti, resp. Ti+1, be the bdp containing both bi and bi+1, resp. bi+1 and
bi+2. By definition of a back-digitization, ξ(bi) ∈ bi and ξc(bi+1) ∈ bi+1. Then,
ξ(bi) and ξc(bi+1) lie on CTi , the Ti -straightest arc. Recall that, by definition of
ξc, ξc(bi) is an endpoint of CTi and that, by Lemma 6, ei, the other end-point615
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of CTi , lies on bi+1. By contradiction assume that ξ(bi) does not belong to the
straightest arc between ξc(bi) and ξc(bi+1). Then ξc(bi+1) 6= ei and ξ(bi) belongs
to the straightest arc between ξc(bi+1) and ei. This straightest arc is included in
the disk with diameter [ξc(bi+1), ei] (Property 4) which is itself included in the disk
with diameter bi+1. We derive that ξ(bi) is a grid point ({ξ(bi)} = bi ∩ bi+1) and,620

by Lemma 4, it is an end-point of CTi , that is ξ(bi) = ei. Since both endpoints of
CTi lie on bi, CTi is included in the disk with diameter bi and ξc(bi+1) = ξ(bi).
Contradiction! We conclude that ξ(bi) is in the straightest arc between ξc(bi) and
ξc(bi+1). ut

Establishing the monotony of a back-digitization needs further tedious calcu-625

lations that will be carried out in Proposition 2. But before that, we still have
to give a technical lemma about subsequences of semi-chains. This lemma is also
of primary importance for the next subsection dealing with sparse samplings of a
curve.

Lemma 8 Let C be a δ-LTB curve.630

(a) Let a, b, c be three points of C such that d(a, b) < δ and d(b, c) < δ. Let consider

the three arcs such that C \{a, b, c} is a disjoint union of these three arcs. Then one

of them has its turn greater than π
2 .

(b) Let (ak)k∈Z/NZ, N ≥ 3, be a semi-chain of C such that, for any i, j ∈ Z/NZ,

d(ai, aj) < δ and, for any k ∈ Z/NZ \ {0}, the arc from ak−1 to ak whose inter-635

section with the semi-chain is {ak−1, ak} is a straightest arc. Then, the arc from

a0 to aN−1 passing through a1, . . . , aN−2 is a straightest arc.

Proof

(a) Let A be the arc of C between the points a and b and not containing the point
c. If A is not a straightest arc, then by applying Fenchel’s Theorem (the turn
of closed curve is bounded from below by 2π) and the additivity of turns, both
stated in Property 1, one has

κ(A)+ < el(a), er(a) > +κ(A′)+ < el(b), er(b) > ≥ 2π,

where A′ is the straightest arc between a and b (A′ exists for d(a, b) < δ).
Moreover, from Lemma 1-b, we have

< el(a), er(a) > +κ(A′)+ < el(b), er(b) > ≤
π

2
.

Then κ(A) ≥ 2π − π/2 > π/2 and we are done. The same arguments hold for
the arc B between the points b and c and not containing the point a. Finally, if
A and B are straightest arcs, we denote by C the arc of C between the points
a and c and not containing the point b. Using as above Fenchel’s Theorem, the
additivity of turns and Lemma 1-b, we get

κ(C) ≥ 2π −
(
< el(a), er(a) > +κ(A)+ < el(b), er(b) > +κ(B)

+ < el(c), er(c) >
)

≥ 2π −
(
< el(a), er(a) > +κ(A)+ < el(b), er(b) >

)
−
(
< el(b), er(b) > +κ(B)+ < el(c), er(c) >

)
≥ 2π − π/2− π/2
≥ π.
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So, the result holds.
(b) The proof is done by finite induction on N .640

If N = 3, the first part of this lemma permit us to derive that the arc of C
between a0 and a2 and not containing a1 has a turn greater than π/2 from the
hypotheses of statement (b):
(i) the turn of the arc between a0 and a1 not containing a2 is not greater than

π/2,645

(ii) the turn of the arc between a1 and a2 not containing a0 is not greater than
π/2.

Then, the straightest arc between a0 and a2 which exists for d(a0, a2) < δ, is
the arc between a0 and a2 and containing a1.
Assume that the result holds for the semi-chain (ak)k∈[[0,n]] where 3 ≤ n ≤ N−1.650

On the one hand, from the induction hypothesis, the arc Cn between a0 and
an not containing aN is a straightest arc. On the other hand, from the general
hypothesis, the arc from an to an+1 not containing a0 is a straightest arc.
Then, from the first part of this lemma, the arc from an+1 to a0 not containing
the points ai, 1 ≤ i ≤ n, has a turn greater than π/2. Thus, this arc cannot be655

a straightest arc though such a straightest arc between a0 and an+1 exists (for
d(a0, an+1) < δ). We conclude that the arc from a0 to an+1 passing through
ai, . . . , an is a straightest arc. This achieves the induction ut

Eventually, thanks to Lemmas 3,7 and 8, we can now state the result announced
at the beginning of this section and recalled here :660

Proposition 2 Let C a δ-LTB curve. On a compatible grid, any back-digitization is a

monotonic sampler.

Proof Let (bi)i∈Z/NZ be a cyclically ordered set of the bels associated to C on a
compatible grid and ξ be a back-digitization. Let i, j ∈ Z/NZ. We consider the
following sets:

C1 = {ξc(bk)}k∈[[i,j+1]] t
⊔

k∈[[i,j]]
C̊ξc(bk),ξc(bk+1),

and
C2 = {ξc(bk)}k∈[[j,i+1]] t

⊔
k∈[[j,i]]

C̊ξc(bk),ξc(bk+1).

From Lemma 3, C1 is an arc between ξc(bi) and ξc(bj+1) and C2 is an arc between
ξc(bj) and ξc(bi+1). From Lemma 7, we derive that

C1 =
⊔

k∈[[i,j]]

(
C̊ξc(bk),ξ(bk) t C̊ξ(bk),ξc(bk+1)

)
t {ξ(bk)}k∈[[i,j]] t

(
{ξc(bk)}k∈[[i,j+1]] \ {ξ(bk)}k∈[[i,j]]

)
, (1)

and

C2 =
⊔

k∈[[j,i]]

(
C̊ξc(bk),ξ(bk) t C̊ξ(bk),ξc(bk+1)

)
t {ξ(bk)}k∈[[j,i]] t

(
{ξc(bk)}k∈[[j,i+1]] \ {ξ(bk)}k∈[[j,i]]

)
. (2)
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Lemma 8-b, applied to the semi-chains (ξ(bk), ξc(bk+1), ξ(bk+1)), shows that the
arcs C̊ξ(bk),ξc(bk+1) t {ξc(bk+1)} t C̊ξc(bk+1),ξ(bk+1) are straightest arcs of C, that

is, C̊ξ(bk),ξ(bk+1) = C̊ξ(bk),ξc(bk+1) t {ξc(bk+1)} t C̊ξc(bk+1),ξ(bk+1). Observe that, if
for some k ∈ [[i, j]] , ξc(bk+1) /∈ {ξc(bm)}m∈[[i,j+1]] \ {ξ(bm)}m∈[[i,j]], then ξc(bk+1) ∈
{ξ(bm)}m∈[[i,j]] and since ξc(bk+1) ∈ C̊ξ(bk),ξ(bk+1), ξc(bk+1) = ξ(bk) or ξc(bk+1) =

ξ(bk+1) and C̊ξ(bk),ξ(bk+1) = C̊ξc(bk+1),ξ(bk+1) or C̊ξ(bk),ξ(bk+1) = C̊ξc(bk),ξ(bk+1).The
same reasoning holds if ξc(bk+1) /∈ {ξc(bm)}m∈[[j,i+1]] \{ξ(bm)}m∈[[j,i]]. Then, Equa-
tions (1), (2) can be rewritten as

C1 = {ξc(bi)} t C̊ξc(bi),ξ(bi)t{ξ(bk)}k∈[[i,j]] t
⊔

k∈[[i,j−1]]

C̊ξ(bk),ξ(bk+1)


t C̊ξ(bj),ξc(bj+1) t {ξc(bj+1)}

and

C2 = {ξc(bj)} t C̊ξc(bj),ξ(bj)t{ξ(bk)}k∈[[j,i]] t
⊔

k∈[[j,i−1]]

C̊ξ(bk),ξ(bk+1)


t C̊ξ(bi),ξc(bi+1) t {ξc(bi+1)}.

Eventually, the latter equalities show that the arcs of C from ξ(bi) to ξ(bj) are

C′1 =
⊔

k∈[[i,j−1]]

C̊ξ(bk),ξ(bk+1) t {ξ(bk)}k∈[[i,j]] (3)

and665

C′2 =
⊔

k∈[[j,i−1]]

C̊ξ(bk),ξ(bk+1) t {ξ(bk)}k∈[[j,i]]. (4)

Since C′1 and C′2 are complementary arcs, it can be seen that these two arcs intersect
ξ(Belh(C)) respectively in {ξ(bk)}k∈[[i,j]] and {ξ(bk)}k∈[[j,i]]. In particular, taking
j = i+1, we see that the straightest arc between ξ(bi) and ξ(bi+1) does not contain
any point of ξ(Belh(C)) in its interior. Besides, by definition of a back-digitization,
and since the grid is compatible with the curve C, we have d(ξ(bk), ξ(bk+1) < δ for670

any k ∈ Z/NZ. ut

3.5 Sparse monotonic samplers

In this subsection, we extend Proposition 2 to subsequences of Belh(C) provided
the back-digitization still yields sampling semi-chains. This is of interest for the
length estimation where estimators should only use sparse subsequences of Belh(C)675

to be convergent (see Section Introduction).
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Theorem 1 Let C be a δ-LTB curve on a compatible grid hZ2. Let ξ : Belh(C) → C
be a back-digitization. Denoting by (bk)k∈Z/NZ the cyclically ordered set Belh(C) and

assuming N ≥ 3, let (bσ(i))i∈Z/NσZ be a subsequence of (bk) such that h#[[σ(i), σ(i+
1)]] < δ. Then,

C =
⋃

i∈Z/NσZ

C′
i ,

where C′
i is the straightest arc between ξ(bσ(i)) and ξ(bσ(i+1)), and the intersection

between C′
i and C′

j with i 6= j is either empty or reduced to a point.

Proof In this proof, we write mi for the middle of the bel bi. For any i ∈ Z/NZ, let
Ci be the straightest arc between ξ(bi) and ξ(bi+1). From Proposition 2 , we have680

C =
⋃
i∈Z/NZ Ci with Ci ∩Cj = ∅ if j − i /∈ {−1, 0, 1} and Ci ∩Cj is a singleton if

j − i ∈ {−1, 1}.
Thus, C =

⋃
i∈Z/NσZ C

′
i where C′i is defined by C′i =

⋃σ(i+1)−1
j=σ(i) Cj . Therefore,

it is sufficient to prove that, for any i ∈ Z/NσZ, C′i is a straightest arc. So, let
i ∈ Z/NσZ. As #[[σ(i), σ(i+ 1)]] < δ/h and the d1 distance (Manhattan distance)685

between two consecutive middles mi and mi+1 is equal to h, the d1 distance
between any points mj and mk where σ(i) ≤ j < k ≤ σ(i + 1) is bounded from
above by δ − h. Moreover, by definition of a back-digitization, |ξ(bj) −mj | ≤ h/2
for any j ∈ [[σ(i), σ(i + 1)]]. Hence, d1

(
ξ(bj), ξ(bk)

)
< δ if σ(i) ≤ j < k ≤ σ(i + 1).

Then, the Euclidean distance between ξ(bj) and ξ(bk) is also bounded from above690

by δ. All the assumptions of Lemma 8-(b) are then satisfied. Thereby, thanks to
this lemma, we conclude that C′i is a straightest arc and we are done. ut

In Theorem 1, the expression h#[[σ(i), σ(i+1)]] can be viewed as the d1 length
of the boundary polyline associated to the dual representation of the bels bk,
k ∈ [[σ(i), σ(i+ 1)]] (see Figure 17).695

In the sequel, given a LTB curve C and a grid step h compatible with C, any
subsequence (bσ(i))i∈Z/NσZ of the cyclically ordered sequence (bk)k∈Z/NZ of the
bels of the digitization of C is called a normal subsequence of Belh(C) if, for any
i ∈ Z/NσZ, (#[[σ(i+ 1), σ(i)]])h < δ.

4 Application to length estimation700

It is well-known that the length of a rectifiable curve can be approximated with
any arbitrary precision by the length of an inscribed polygonal line provided the
polygonal edge lengths are small enough. This is no more true when the vertices
of the polygonal line are rounded as explained in the introduction of this article.
Thanks to the notion of monotonic sampler introduced in Section 3, we can now
study the conditions under which the lengths of a grid polygon sequence converge
towards the length of a LTB curve and with what speed. In this section, given a
rectifiable curve C, we denote by L(C) its length and given a positive integer n
and a polygon P , we denote by Mn(P ) the mean, relying on the Ln norm, of the
edge lengths of P :

Mn(P ) =

(
1

N

N−1∑
k=0

xk
n

) 1
n

if n <∞ and M∞(P ) = sup
k

(|xk|),
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where the real xk are the edge lengths of P .
The difference between the true length of a curve and the length of a grid

polygon is the sum of two discrepancies. The first one is the discrepancy between
the length of the curve and the length of a polygon which is inscribed in the
curve. This discrepancy is upper-bounded in Section 4.1. The second discrepancy,705

between the length of the inscribed polygon and the length of the grid polygon, is
taken into account in Section 4.2 which concludes the study. The back-digitization
defined in Section 3 permits us to put in correspondence the edges of the inscribed
polygon and those of the grid polygon, and then to compare their lengths.

4.1 LTB curve length estimation using inscribed polygon710

According to Jordan’s definition of curve length, we compare the length of a LTB
curve with the length of an inscribed polygon (without any rounding). More specif-
ically, we focus on the convergence of the length of polygons inscribed in a LTB
curve.

Given a LTB curve C, we say that a polygon inscribed in C splits C into straightest715

arcs if the sequence of the vertices of the polygon is a sampling semi-chain of C.

4.1.1 Turn and length

Intuitively, the more a curve of fixed length turns, the less it moves away from its
origin. This is quantified in the following property.

Property 11 ([1], Theorem 5.8.1 p. 151) Let C be a curve such that κ(C) < π and
let d be the distance between the ends of C. Then,

cos

(
κ(C)

2

)
× L(C) ≤ d.

Notice that this bound is sharp and the equality case only holds for a polygonal720

line of two sides of same length [1].

4.1.2 General case

Here, we study the general case of a LTB-curve without smoothness assumption.
The difference in length between the curve C and the inscribed polygon Lk is

split into two parts. The first part (M∞(Lk)
2µ

M1(Lk)1/2
) bounds the difference in length725

between the arcs of smaller turns and the chords joining their ends. The second part
(M∞(Lk)1−µ) bounds the difference in length between the arcs of greater turns
and their chords. The first part converges thanks to the hypothesis M∞(Lk)4µ =
o (M1(Lk)) as k → +∞. The second part converges since the number of arcs
of great turn decreases relatively to the total number of arcs. The parameter µ730

discriminates the arcs of small turn and great turn. The convergence hypothesis
M∞(Lk)4µ = o (M1(Lk)) constrains the choice of the parameter µ. It restricts the
discrepancy of the rate of convergence of the different edges of Lk (there should
not be any edge length tending toward 0 too slowly in comparison with the other
edge lengths).735
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Proposition 3 Let C be a δ-LTB curve with δ > 0. Let (Lk) be a sequence of polygons

splitting the curve into straightest arcs. Assume limk→+∞M1(Lk) = 0 and that there

exists µ ∈ (1
4 , 1) such that M∞(Lk)4µ = o (M1(Lk)) as k → +∞. Then

lim
k→+∞

L(Lk) = L(C).

More precisely,

|L(C)− L(Lk)| = O
(M∞(Lk)2µ

M1(Lk)1/2

)
+O

(
M∞(Lk)1−µ

)
.

Proof From the hypothesis, we derive that limk→+∞M∞(Lk)2µ = 0. Then, there
exists k0 such that for any k > k0, M∞(Lk) < 1. We consider such a k > k0 and
we denote by

(
ζki
)
i∈Z/NkZ

, Nk ∈ N, an ordered sequence of the vertices of the

polygon Lk. By definition, Lk splits C into straightest arcs, so M∞(Lk) < δ, for
any i ∈ Z/NkZ the straightest arc Ck

i between ζki−1 and ζki is well defined and740

κ(Ck
i ) ≤ π/2.
Let I0 and I1 be two subsets of integers defined by:

Ik0 :=
{
i|κ(Ck

i ) ≤ π

2
M∞(Lk)µ

}
,

Ik1 := Z/NkZ \ Ik0 .

By definition of length and Property 11,

Nk−1∑
i=0

‖ζki+1 − ζ
k
i ‖ ≤ L(C) ≤

Nk−1∑
i=0

‖ζki+1 − ζ
k
i ‖

cos
(
κ(Ck

i )
2

) .
Hence, ∣∣∣∣∣L(C)−

Nk−1∑
i=0

‖ζki+1 − ζ
k
i ‖

∣∣∣∣∣ ≤
∣∣∣∣∣∣
Nk−1∑
i=0

‖ζki+1 − ζ
k
i ‖

cos
(
κ(Ck

i )
2

) − Nk−1∑
i=0

‖ζki+1 − ζ
k
i ‖

∣∣∣∣∣∣
≤
Nk−1∑
i=0

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖,

≤
∑
i∈Ik0

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖

+
∑
i∈Ik1

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖.

On the one hand, since there is at most bmM∞(Lk)−µc arcs Ck
i of turn greater

than M∞(Lk)µπ/2 in C where m := κ(C)
π/2

(otherwise, the turn of C would be greater

than κ(C)), the cardinal of I1 is such that

#Ik1 ≤ mM∞(Lk)−µ.
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Then,

∑
i∈I1

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖ ≤

 1

cos
(
π/2
2

) − 1

mM∞(Lk)1−µ

= O
(
M∞(Lk)1−µ

)
.

(5)

On the other hand, by Titu’s Lemma,

∑
i∈I0

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖ ≤

√
Nk

 1

cos
(
M∞(Lk)µπ/2

2

) − 1

√∑
i∈I0

‖ζki+1 − ζ
k
i ‖2.

Thus, since M∞(Lk) ≤ 1, for any i ∈ Z/NkZ, ‖ζi+1 − ζi‖2 ≤ ‖ζi+1 − ζi‖,

∑
i∈I0

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖ ≤

√
Nk

 1

cos
(
M∞(Lk)µπ/2

2

) − 1

√∑
i∈Ik0

‖ζki+1 − ζ
k
i ‖,

≤
√
Nk

 1

cos
(
M∞(Lk)µπ/2

2

) − 1

√L(Lk).

≤
√
Nk

 1

cos
(
M∞(Lk)µπ/2

2

) − 1

√L(C).

Moreover,
1

cos(y/2)
− 1 = O(y2).

Hence

∑
i∈I0

 1

cos
(
κ(Ck

i )
2

) − 1

 ‖ζki+1 − ζ
k
i ‖ = O(

√
NkM∞(Lk)2µ). (6)

Finally, by the equations (5) and (6),∣∣∣∣∣L(C)−
Nk∑
i=0

‖ζki+1 − ζ
k
i ‖

∣∣∣∣∣ = O(
√
NkM∞(Lk)2µ) +O(M∞(Lk)1−µ)

= O
(M∞(Lk)2µ

M1(Lk)1/2

)
+O

(
M∞(Lk)1−µ

)
. ut
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In order to use Proposition 3, the parameter µ has to be chosen. Since the

speed of convergence is the slowest of M∞(Lk)
2µ

M1(Lk)1/2
and M∞(Lk)1−µ, the best choice

of the parameter is such that

M1(Lk) ∼M∞(Lk)6µ−2.

That is, µ = 1/2 for a uniform partition giving an error in O
(
M∞(Lk)1/2

)
(in745

comparison, a polygonal LTB curve randomly sampled provides a linear error). As-
suming a Lipschitz continuous turn, the convergence of inscribed polygon lengths
toward the true length of the curve can be dramatically speed up: from M∞(Lk)1/2

to M∞(Lk)2 for a uniform sampling. This is the purpose of the next section.

4.1.3 Regular case750

In this section, we deal with the case of a LTB-curve whose turn is a Lipschitz
function of the arc length, that is the curve is of class C1,1, or equivalently, is
par-regular (for the equivalence between these notions —and also Federer’s notion
of reach— see [19]).

Proposition 4 Let C be a δ-LTB curve having a 1
r -Lipschitz turn. Let (Lk) be a

sequence of inscribed polygons splitting the curve C into straightest arcs such that

limk→+∞M∞(Lk) = 0. Then

lim
k→+∞

L(Lk) = L(C).

Let r1 = min(r, δ/2) and (ζki )i∈Z/NkZ be a cyclically ordered sequence of all the vertices

of Lk in C. For any k such that M∞(Lk) < 2r1,

|L(C)− L(Lk)| ≤
Nk−1∑
i=0

∣∣∣∣∣2r1 arcsin

(
‖ζki − ζ

k
i−1‖

2r1

)
− ‖ζki − ζ

k
i−1‖

∣∣∣∣∣.
Moreover

Nk−1∑
i=0

∣∣∣∣∣2r arcsin

(
‖ζki − ζ

k
i−1‖

2r

)
− ‖ζki − ζ

k
i−1‖

∣∣∣∣∣ = O

(
(M3(Lk))

3

M1(Lk)

)
.

Proof For any k, let (ζki )i∈Z/NkZ be a cyclically ordered sequence of the vertices of755

Lk in C. There exists k0, such that for any k > k0, M∞(Lk) < 2r1. By [19, Lemma
2.11], for any i ∈ Z/NkZ, the straightest arc Cζki−1,ζ

k
i

between ζki−1 and ζki is such

that

L(Cζki−1,ζ
k
i
) ≤ 2r1 arcsin

(
‖ζki − ζ

k
i−1‖

2r1

)
.

Since the function x 7→ 2r1 arcsin( x
2r1

) − x is increasing on [0, 2r1), for any k

such that M∞(Lk) < 2r1,

|L(C)− L(Lk)| ≤
Nk−1∑
i=0

∣∣∣∣∣2r1 arcsin

(
‖ζki − ζ

k
i−1‖

2r1

)
− ‖ζki − ζ

k
i−1‖

∣∣∣∣∣,
≤ Nk

(
2r1 arcsin

(
M∞(Lk)

2r1

)
−M∞(Lk)

)
.
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Moreover,

arcsin(x) = x+O(x3) as x→ 0.

Then,

|L(C)− L(Lk)| ≤
Nk−1∑
i=0

∣∣∣∣∣2r1 arcsin

(
‖ζki − ζ

k
i−1‖

2r1

)
− ‖ζki − ζ

k
i−1‖

∣∣∣∣∣,
≤ Nk O

(
(M3(Lk))3

)
≤ L(C)
M1(Lk)

O
(

(M3(Lk))3
)
,

≤ O
(

(M3(Lk))3

M1(Lk)

)
. ut

The bound of Proposition 4 is sharp. Indeed, for a circle of radius r and a
uniform and tight enough partition of the circle, one has:

|L(C)− L(Lk)| =
Nk−1∑
i=0

∣∣∣∣∣2r arcsin

(
‖ζki − ζ

k
i−1‖

2r

)
− ‖ζki − ζ

k
i−1‖

∣∣∣∣∣,
= Nk

(
2r arcsin

(
M∞(Lk)

2r

)
−M∞(Lk)

)
= O

(
(M3(Lk))3

M1(Lk)

)
.

Proposition 4 can be compared to [21, Proposition 3]. We get the same rate
of convergence replacing the convexity hypothesis by the local turn boundedness760

hypothesis.

To complete the determination of the convergence speed of polygon lengths
toward the length of a LTB curve, it is necessary to study the weight of the error
due to the use of discrete chords instead of Euclidean chords. This is the goal of
the next section.765

4.2 LTB curve length estimation by means of polygons inscribed in the curve
digitization

Given a LTB curve C and the family of its Gauss digitizations {Digh(C)}h>0, the
results obtained in Sections 3 and 4.1 make it possible to build a convergent esti-
mator of the curve length L(C) using polygons Ah inscribed in the reconstructions770

∂h(C) under some assumptions on their edge lengths. At a fixed resolution, the
estimated length is the length L(Ah). The two following theorems specify these
assumptions, and give the convergence rate, in the general case then in the regular
case.
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•

• • •

• •

•
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Figure 17: In blue, a LTB curve C. The reconstruction of C (red border) is par-
titionned into subarcs (as the one emphasized in the figure). To each subarc cor-
responds an edge whose ends are on the ending bels of the subarc. The union of
all these edges forms a polygon Ah (green) inscribed in ∂h(C). The length of the
curve C is estimated by the length of Ah.

4.2.1 General case775

The length estimator used in the article is based on the choice of a few bels of
Belh(C). The midpoints of these bels are the vertices of a polygon Ah whose length
estimates the length of the curve C (see Figure 17 ). The rate of convergence of the
estimation error towards 0 is a trade off between two parts of the error. The first
part which is Oh→0(M∞(Ah)2µM1(Ah)−1/2 + M∞(Ah)1−µ) in the general case,780

corresponds to the difference between the length of the curve and the length of the
polygon ξ(Ah) inscribed in it (calculated in Proposition 3). It converges toward
0 because of the hypothesis limh→0M1(Ah) = 0. The condition M∞(Ah)4µ =
o(M1(Ah)), also inherited from Proposition 3, is explained just before it. The
second part, hNh = Oh→0

h
M1(Ah) corresponds to the difference in length of the785

polygon Ah inscribed in ∂h(C) and of the back-digitized polygon ξ(Ah) inscribed
in C, where Nh stands for the number of sides of Ah. The second part converges
toward 0 if the mean length M1(Ah) converges toward 0 slower than the grid
step h. The remaining hypothesis (each vertex of Ah lies on a bel of the normal
subsequence) ensures that the vertices of Ah are back-digitized on C in the order790

defined on it.

Theorem 2 Let C be a δ-LTB curve with δ > 0. Let µ ∈ (1
4 , 1) and {Ah}h>0 be a

family of polygons such that

– for any h compatible with C, the vertices of Ah are the bel middles of a normal

subsequence of the cyclically ordered bels (bhi )i∈Z/NZ,795

– h = o(M1(Ah)) as h→ 0,

– M∞(Ah)4µ = o (M1(Ah)) = o(1) as h→ 0.
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Then,

lim
h→0
L(Ah) = L(C).

More precisely,

‖L(C)− L(Ah)‖ =

Oh→0

(
M∞(Ah)2µM1(Ah)−1/2 +M∞(Ah)1−µ + hM1(Ah)−1

)
.

Proof Let ξ : Belh(C) → C be a back-digitization and (bhi )i∈Z/NhZ be a normal

subsequence of Belh(C) defining the polygon Ah. Write mh
i for the middle of bhi

and let Lh be the polygon whose ordered set of vertices is ξ((bhi )i∈Z/NhZ). Then,

|L(C)− L(Ah)| ≤ |L(C)− L(Lh)|+ |L(Lh)− L(Ah)|.

By definition of a back-digitization, d(mh
i , ξ(b

h
i )) < h/2 for any i, so |L(Lh)−L(Ah)|

is bounded from above by Nh×h, that is by h/M1(Ah)×L(Ah). Since L(Lh) < L(C)
and we assume limh→0 h/M1(Ah) = 0, using the triangle inequality, we can bound
from above L(Ah) by some constant (for instance 2L(C) for h/M1(Ah) ≤ 1/2). We
derive that

|L(Lh)− L(Ah)| = Oh→0

(
h

M1(Ah)

)
.

By Theorem 1, (bhi ) delimits straightest arcs of C. Hence, thanks to Proposition
3, we get

|L(C)− L(Ah)| = Oh→0

(
M∞(Lh)2µ

M1(Lh)1/2
+M∞(Lh)1−µ +

h

M1(Ah)

)
.

Moreover, M∞(Lh) ≤M∞(Ah) + h. Then,

|L(C)− L(Ah)| = Oh→0

(
(M∞(Ah) + h)2µ

M1(Ah)1/2
+ (M∞(Ah) + h)1−µ +

h

M1(Ah)

)
.

Finally, since h is dominated asymptotically byM1(Ah) which is less thanM∞(Ah),

|L(C)− L(Ah)| = Oh→0

(
M∞(Ah)2µ

M1(Ah)1/2
+M∞(Ah)1−µ +

h

M1(Ah)

)
. ut

Theorem 2 gives indication in order to choose the best sampling of the curve.
For a fixed M∞(Ah), the best rate of convergence for an unknown curve C is
reached when M1(Ah) is maximum, that is when M1(Ah) = M∞(Ah): the inscribed800

polygons associated with the family {Ah} have equal edges. In this latter case
the rate of convergence is O

(
M∞(Ah)1/2 + hM∞(Ah)−1) (by choosing µ = 1

2 =

maxµ∈(0,1) min(2µ− 1/2, 1− µ)). Since h2/3 = argmin x>0 max(
√
x, h/x), the best

rate of convergence, h1/3, is achieved for M∞(Ah) ∼ h2/3.
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4.2.2 Regular case805

Theorem 3 Let C be a δ-LTB curve having a 1
r -Lipschitz turn (r > 0). Let {Ah}h>0

be a family of polygons such that

– for any h compatible with C,the vertices of Ah are the bel middles of a normal

subsequence of the cyclically ordered bels (bi)i∈Z/NZ,

– h = oh→0(M1(Ah)),810

– limh→0M∞(Ah) = 0.

Then,

lim
h→0
L(Ah) = L(C)

and,

|L(C)− L(Ah)| = Oh→0

(
M3(Ah)3

M1(Ah)

)
.

Moreover, for any h compatible with C such that h + M∞(Ah) < 2r1 with r1 =
min(r, δ/2), we have

|L(C)− L(Ah)| ≤ Nh
(

2r1 arcsin

(
M∞(Ah) + h

2r1

)
−M∞(Ah)

)
,

Proof Let h be compatible with C and ξ : Belh(C) → C be a back-digitization. As
in the proof of Theorem 2, we have

|L(C)− L(Ah)| ≤ |L(C)− L(Lh)|+ hNh,

where Lh is the polygon whose vertices are the images by ξ of the bels defining Ah.
By Theorem 1, the vertices of Lh delimit straightest arcs of C. Let (ζhi )i∈Z/NkZ be
a cyclically ordered sequence of vertices of Lh in C. Assuming h+M∞(Ah) < 2r1,
we derive from Proposition 4 that,815

|L(C)− L(Lk)| ≤
Nh−1∑
i=0

∣∣∣∣∣2r1 arcsin

(
‖ζhi − ζ

h
i−1‖

2r1

)
− ‖ζhi − ζ

h
i−1‖

∣∣∣∣∣ (7)

Since the function x 7→ 2r1 arcsin
(
x

2r1

)
− x is non-negative and increasing on

[0, 2r1),

|L(C)− L(Ah)| ≤
Nh−1∑
i=0

(
2r1 arcsin

(
‖ζhi − ζ

h
i−1‖+ h

2r1

)
− ‖ζhi − ζ

h
i−1‖ − h

)
+ hNh

≤
Nh−1∑
i=0

(
2r1 arcsin

(
‖ζhi − ζ

h
i−1‖+ h

2r1

)
− ‖ζhi − ζ

h
i−1‖

)

≤ Nh
(

2r1 arcsin

(
M∞(Ah) + h

2r1

)
−M∞(Ah)

)
.

Moreover,

arcsin(x) = x+O(x3) as x→ 0.



Monotonic sampling of a Jordan curve from its digitization and application 35

Then, from Equation 7, we derive

|L(C)− L(Ah)| ≤
Nh−1∑
i=0

(
2r1 arcsin

(
‖ζhi − ζ

h
i−1‖

2r1

)
− ‖ζhi − ζ

h
i−1‖

)
+ hNh,

≤ Nh
(
O
(
M3(Ah)3

)
+ h
)

≤ L(C)
Mh

1 (Ah)
O
(
M3(Ah)3 + h

)
,

≤ O
(
M3(Ah)3 + h

Mh
1

)
.

Since h = o(M1(Ah)) and M1(Ah) ≤M3(Ah), we obtain the result:

|L(C)− L(Ah)| = O

(
M3

3 (Ah)

Mh
1

)
. ut

Observe that, by [18, Theorem 2], any par(r)-regular curve C is
√

2r-LTB and
by [18, Lemma 6], its turn is 1

r Lipschitz. Thus, Theorem 3 applies to par(r)-regular
curves taking r1 = min(r, δ/2) = min(r, r/

√
2) = r/

√
2.

Application of theorems 2 and 3 on classical estimators requires some more820

work and will be detailed in future works.

5 Conclusion

The starting point of the study presented in this paper is the couple of articles [21,
20] about convergence of length estimators. The main idea in these articles, origi-
nally stated in [29], is that —a contrary to length estimation in a pure Euclidean825

context— estimating a length from a digital sample cannot be performed by just
picking more and more points on the boundary of the digitization. The picking
has to be sparse relative to the grid step. In the cited articles, the result was
established for graphs of functions and we thought at the time that it could be
straightforwardly adapted on Jordan curves. The content of this paper shows that830

it is far to be the case. It is easy to project the OBQ digitization of a graph of
function on this graph even for non-regular curves. Getting a well-ordered sample
on a Jordan curve from its digitization is another challenge as shown in Figure 12.
A first step in this direction was done in [13]. Nevertheless, it assumes C1,1 regu-
larity and, though the size of the defective regions is quantified, the well-ordering835

is not guaranteed. This has led us to introduce the notion of LTB curve in [18].
The LTB class encompasses the C1,1 curves since we show that C1,1 regularity is
equivalent to be LTB with a Lipschitz turn. Then we formally establish in this
paper that the LTB class of curves is sufficiently constrained to permit ordered
projections (though the class contains non-regular curves). Once a reliable kind of840

projection —the monotonic sampler— is found, proving the multigrid convergence
of non-local perimeter estimators does not give rise to great difficulties.

Furthermore, our results about length estimation may also be applied to arcs
of a LTB curve. Indeed, on the one hand, same calculations as those on the whole
Jordan curve (Theorem 2 or Theorem 3) can be carried out for curve arcs. On845
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the other hand, the back-digitization defined on the Jordan curve (Theorem 1)
should permit to put in correspondence a sparse (but tight enough) partition of
a digital arc to a partition in straightest arcs of the underlying continuous curve.
Nevertheless, it supposes to rewrite all the propositions.

Nevertheless, it remains to study in a future work whether the error bounds850

exhibited in this article are tight or not. Indeed, for a particular Jordan curve, the
worst case considered in the upper bound calculus is only reached at a given reso-
lution. Then, it may be possible to improve the error upper bound. In the perime-
ter estimation, the convexity hypothesis is often used to obtain upper bounds, e.g.
for Non-Local estimation, the convexity hypothesis makes it possible to approach855

experimental convergence speed. As the turn can be seen as a measure of the con-
vexity loss, it can be interesting to see if the results obtained in the convex case
in the literature can be generalized to LTB curves.

Another direction to continue the work done in this paper is to use the back-
digitization to prove the multigrid convergence of the MDSS based perimeter es-860

timators on LTB curves.
The back-digitization could also be used for the estimation of other geometric

features. In particular, since the definition of the back-digitization relies on the
notion of turn, it should be well-suited for curvature estimation. A last perspective
concerns the generalization of the LTB notion to 3D curves and surfaces.865
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(2011). URL https://hal.archives-ouvertes.fr/hal-00576881

8. Federer, H.: Curvature measures. Transactions of the American Mathematical Society
93(3), 418–491 (1959). URL http://www.jstor.org/stable/1993504890

9. Klette, R., Rosenfeld, A.: Geometric Methods for Digital Picture Analysis. Elsevier (2004)
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