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Abstract. The work described in this article is part of the French national project 

ANR MoveDVDC. One of the objectives of this project is to evaluate the influ-

ence of aging and damage of asphalt concrete materials on the lifetime of road 

pavements. In this context, modeling the behavior of aged or not asphalt mixes 

in fatigue is planned. At this moment, the first researches focused on the devel-

opment of a phenomenological model reflecting the viscoelastic nature of asphalt 

mixtures to facilitate numerical modeling of structures. Indeed, the 2S2P1D rhe-

ological model can already correctly reproduce it, but the presence of fractional 

derivatives makes the modeling complicated. With this objective and relying on 

the observation of experimental T/C complex stiffness modulus test data, a 

“COULON model” with variable parameters was developed. It consists of two el-

ements in parallel, which represent the real and imaginary parts of the complex 

stiffness modulus, such that their respective parameters named 𝑅𝐸 and 𝐼𝜂 vary 

according to temperature, pulsation and amplitude (for non-linearity) of sinusoi-

dal loading. To allow a numerical implementation, the parameters 𝑅𝐸 and 𝐼𝜂 fol-

low a CARREAU-YASUDA law as a function of the reduced pulsation, associating 

the effects of temperature and pulsation. In homogeneous conditions, this model 

can reproduce T/C complex stiffness modulus tests on cylindrical specimens. 
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models, complex stiffness modulus, non-linearity. 

1 Introduction 

One of the objectives of the French national project ANR MoveDVDC is to evaluate 

the influence of aging and damage of asphalt concrete materials on the lifetime of road 

pavements. In this context, modeling the behavior of aged or not asphalt mixes in fa-

tigue is planned with the Discrete Element Method (DEM). It allows to model a test 

with a set of interconnected digital particles by a contact law. 

The first researches, which are presented in this article, focused on the development 

of a contact law reflecting the viscoelastic nature of bituminous mixtures to facilitate 

numerical modeling of structures. To do this, experimental T/C complex stiffness mod-

ulus test data were used. 
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2 Viscoelasticity modeling: COULON model 

2.1 Existing rheological models: advantages and disadvantages 

The 2S2P1D model [1, 2, 3] can already correctly simulate the viscoelastic behavior of 

asphalt concrete mixes above the glass transition temperature 𝑇𝑔. But below 𝑇𝑔, mod-

eling is approximate. For a bituminous mixture using a bitumen 35/50, 𝑇𝑔 is around 30 

°C. Despite this inconvenient, the 2S2P1D model stays very useful for precisely staking 

the complex stiffness modulus in COLE-COLE and BLACK spaces on a large temperature 

and frequency range by directly calculating it. 

Unfortunately, the 2S2P1D model consists in two parabolic elements in series whose 

stress behavior is equal to a constant multiplied by the fractional derivative of the de-

formation. The presence of these fractional derivatives makes the modeling compli-

cated for structural modelling with Finite Element Method (FEM) or DEM, but it re-

mains popular for laboratory tests modeling. 

 

The generalized MAXWELL and generalized KELVIN-VOIGT models are much more eas-

ily programmable. However, to correctly simulate the viscoelastic behavior of bitumi-

nous mixtures, a sufficient number of parameters is required. Thus, it is necessary to 

repeat at least ten to fifteen elements, in other words using at least twenty to thirty 

parameters. In comparison, the 2S2P1D model requires only nine parameters. 

2.2 Proposal of a different design 

Instead of trying to multiply the rheological elements, it might be useful to consider a 

phenomenological model for sinusoidal loadings representing directly the real and im-

aginary parts of the material complex stiffness modulus 𝐸𝑀
∗ , such that they can vary 

according to the entry conditions. 

The proposal is therefore to use a simple model consisting of only two elements in 

parallel. The first one, of parameter 𝑅𝐸, represents the real part and is piloted by an 

elastic dominant. The second one, of parameter 𝐼𝜂, represents the imaginary part di-

vided by the pulsation and is piloted by a viscous dominant. The components 𝑅𝐸 and 

𝐼𝜂 can vary according to the temperature 𝑇 of the environment, the pulsation 𝜔 of the 

imposed signal and the amplitude of deformation 𝜀0 of the imposed loading. Its code 

name is "COULON model", which can be abbreviated "CLN model" (Fig. 1). 

 

 

Fig. 1. Schematic diagram of the phenomenological COULON model. 
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3 Creation of the COULON(T,ω) model 

3.1 Operating mode of the COULON(T,ω) model 

For bitumen, temperature and frequency effects are dependent in linear viscoelasticity. 

This phenomenon is at the origin of the Time-Temperature Superposition Principle 

(TTSP). It is characterized using a translation factor 𝑎𝑇 to calculate the reduced fre-

quency 𝜔𝑅−𝑇, which connects these two physical quantities (Eq. (1)). The translation 

factor is calculated with the WILLIAMS-LANDEL-FERRY (WLF) relation according to 

the temperature 𝑇 (Eq. (2)). 𝑇𝑟𝑒𝑓  is the chosen reference temperature, 𝐶1 and 𝐶2 are two 

constants. 

 𝜔𝑅−𝑇 = 𝑎𝑇 ∙ 𝜔 (1) 

 log 𝑎𝑇 =
−𝐶1∙(𝑇−𝑇𝑟𝑒𝑓)

𝐶2+(𝑇−𝑇𝑟𝑒𝑓)
 (2) 

Variations of real part 𝑅𝐸 and reduced imaginary part 𝐼𝜂,𝑅−𝑇 (Eq. (3)) as a function of 

the reduced pulsation can be fitted using CARREAU-YASUDA laws [4, 5]. Behavior of 

asphalt concrete mixes varies greatly around the glass transition temperature 𝑇𝑔. This 

implies to characterize a modeling below 𝑇𝑔 (rubbery state) and a modeling above 𝑇𝑔 

(vitreous state) (Eqs. (4) and (5)). 𝑅𝐸,𝑙𝑜𝑤 , 𝐼𝜂,𝑙𝑜𝑤 and 𝑅𝐸,𝑢𝑝, 𝐼𝜂,𝑢𝑝 are respectively lower 

and upper bounds, 𝜆 is a characteristic time, 𝑎 et 𝑛 are dimensionless parameters. 

 𝐼𝜂 = 𝑎𝑇 ∙ 𝐼𝜂,𝑅−𝑇 (3) 

 𝑅𝐸 = {
𝑅𝐸,𝑙𝑜𝑤,1 ∙ [1 + [𝜆𝐸,𝑅−𝑇,1 ∙ 𝜔𝑅−𝑇]

𝑎𝐸,1
]

𝑛𝐸,1−1

𝑎𝐸,1     𝑖𝑓 𝜔𝑅−𝑇 ≤ 𝜔𝑅−𝑇𝑔

𝑅𝐸,𝑢𝑝,2 ∙ [1 + [𝜆𝐸,𝑅−𝑇,2 ∙ 𝜔𝑅−𝑇]
𝑎𝐸,2

]

𝑛𝐸,2−1

𝑎𝐸,2     𝑖𝑓 𝜔𝑅−𝑇 ≥ 𝜔𝑅−𝑇𝑔

 (4) 

𝑎𝐸,1 > 0, 𝑛𝐸,1 > 1, 𝑎𝐸,2 < 0, 𝑛𝐸,2 > 1, 𝑛𝐸,1 = 𝑛𝐸,2, 𝜆𝐸,𝑅−𝑇,1 = [𝜔𝑅−𝑇𝑔

2 ∙ 𝜆𝐸,𝑅−𝑇,2]
−1

 

 𝐼𝜂,𝑅−𝑇 = {
𝐼𝜂,𝑅−𝑇,𝑙𝑜𝑤,1 ∙ [1 + [𝜆𝜂,𝑅−𝑇,1 ∙ 𝜔𝑅−𝑇]

𝑎𝜂,1
]

𝑛𝜂,1−1

𝑎𝜂,1     𝑖𝑓 𝜔𝑅−𝑇 ≤ 𝜔𝑅−𝑇𝑔

𝐼𝜂,𝑅−𝑇,𝑢𝑝,2 ∙ [1 + [𝜆𝜂,𝑅−𝑇,2 ∙ 𝜔𝑅−𝑇]
𝑎𝜂,2

]

𝑛𝜂,2−1

𝑎𝜂,2     𝑖𝑓 𝜔𝑅−𝑇 ≥ 𝜔𝑅−𝑇𝑔

 (5) 

𝑎𝜂,1 < 0, 𝑛𝜂,1 < 1, 𝑎𝜂,2 > 0, 𝑛𝜂,2 < 1, 𝜆𝜂,𝑅−𝑇,1 = [𝜔𝑅−𝑇𝑔

2 ∙ 𝜆𝜂,𝑅−𝑇,2]
−1

 

Knowing 𝑅𝐸 and 𝐼𝜂, the COULON model can be exploited by calculating the complex 

stiffness modulus 𝐸𝑀
∗  (Eq. (6)) and its derivatives: modulus norm, phase angle, ... 

 𝐸𝑀
∗ = ℜ(𝐸𝑀

∗ ) + 𝑖 ∙ ℑ(𝐸𝑀
∗ ) = 𝑅𝐸 + 𝑖 ∙ 𝜔 ∙ 𝐼𝜂 (6) 
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3.2 Example with MANGIAFICO’s experimental data (2014) [6] 

In [6], T/C complex stiffness modulus tests were carried out by imposing a controlled 

sinusoidal deformation of amplitude 50 μm/m. The samples were cylindrical with a 

diameter of 75 mm and a height of 150 mm. The experimental data of the sample 

A.0.35-50.R4 were used here. The corresponding used bitumen binder has a grade 

35/50 and composes 5.35% of the sample mass. The air gap is 3.7% of the volume. The 

experimental data were retrieved by graphical reading with the software "GetData 

Graph Digitizer". 

The linear viscoelastic modeling parameters for the sample A.0.35-50.R4 are given 

in Tab. 1. The good fit of the model on the experimental data is observable in Fig. 2. 

Table 1. A.0.35-50.R4 sample modeling parameters. 

WLF law 𝑇𝑟𝑒𝑓 = 14.2 °𝐶 𝐶1 = 30.860 𝐶2 = 196.094 °𝐶 

Glass transition reduced pulsation 𝜔𝑅−𝑇𝑔
= 7.50 ∙ 10−4  𝑟𝑎𝑑 𝑠⁄  

Real part 𝑹𝑬(𝝎𝑹−𝑻) Imaginary part 𝑰𝜼,𝑹−𝑻(𝝎𝑹−𝑻) 

𝝎𝑹−𝑻 ≤ 𝝎𝑹−𝑻𝒈
 𝝎𝑹−𝑻 ≥ 𝝎𝑹−𝑻𝒈

 𝝎𝑹−𝑻 ≤ 𝝎𝑹−𝑻𝒈
 𝝎𝑹−𝑻 ≥ 𝝎𝑹−𝑻𝒈

 

𝑅𝐸,𝑙𝑜𝑤,1 = 4.5 𝑀𝑃𝑎 
𝑅𝐸,𝑢𝑝,2 

= 36500 𝑀𝑃𝑎 

𝐼𝜂,𝑅−𝑇,𝑙𝑜𝑤,1

= 3.00 ∙ 104 𝑀𝑃𝑎. 𝑠 

𝐼𝜂,𝑅−𝑇,𝑢𝑝,2

= 2.40 ∙ 106 𝑀𝑃𝑎. 𝑠 

𝜆𝐸,𝑅−𝑇,1

= 7.11 ∙ 101  𝑠 𝑟𝑎𝑑⁄  

𝜆𝐸,𝑅−𝑇,2

= 2.50 ∙ 104  𝑠 𝑟𝑎𝑑⁄  

𝜆𝜂,𝑅−𝑇,1

= 9.88 ∙ 103  𝑠 𝑟𝑎𝑑⁄  

𝜆𝜂,𝑅−𝑇,2

= 1.80 ∙ 102  𝑠 𝑟𝑎𝑑⁄  

𝑎𝐸,1 = 0.220 𝑎𝐸,2 = −0.164 𝑎𝜂,1 = −0.206 𝑎𝜂,2 = 0.250 

𝑛𝐸,1 = 2.850 𝑛𝐸,2 = 2.850 𝑛𝜂,1 = 0.090 𝑛𝜂,2 = −0.110 

 

  

Fig. 2. Sample A.0.35-50.R4 (T/C complex stiffness modulus test, 50 µm/m) – Plot of experi-

mental data and COULON model (T,ω) in the graph “phase angle 𝜑 function of reduced pulsation 

𝜔𝑅−𝑇” (left) and in the “COLE-COLE space” (right). The maximum phase angle corresponds to 

the glass transition reduced pulsation 𝜔𝑅−𝑇𝑔
. 
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4 Creation of the COULON(T,ω,ε0) model 

4.1 Operating mode of the COULON(T,ω,ε0) model 

It consists in applying the Time-Temperature-Amplitude Semi-Superposition Principle 

(TTASSP). First, the previous COULON(T,ω) model must be fitting to a reference am-

plitude 𝜀0,𝑟𝑒𝑓 that we choose. Then, this model is evolved in applying a new translation 

factor 𝑎𝐴 to the reduced pulsation 𝜔𝑅−𝑇 (Eq. (7)) and a power coefficient 𝑏𝐴 to the 

upper bound 𝐼𝜂,𝑅−𝑇,𝑢𝑝,2 (Eq. (8)). It has been observed that 𝑎𝐴 and 𝑏𝐴 seem following a 

law of type WLF according to 𝜀0 (Eqs. (9) and (10)). Careful, these observations were 

done for the only experimental data found in literature for three complete COLE-COLE 

curves (part 4.2) and are valid only above glass temperature. Further data will be needed 

later to confirm or evolve these non-linearity observations. 

 𝜔𝑅−𝑇𝐴 = 𝑎𝐴 ∙ 𝜔𝑅−𝑇 (7) 

 𝐼𝜂,𝑅−𝑇𝐴,𝑢𝑝,2 = 𝐼𝜂,𝑅−𝑇,𝑢𝑝,2
𝑏𝐴 (8) 

 log 𝑎𝐴 =
−𝐴1∙(𝜀0−𝜀0,𝑟𝑒𝑓)

𝐴2+(𝜀0−𝜀0,𝑟𝑒𝑓)
 (9) 

 log 𝑏𝐴 =
−𝐵1∙(𝜀0−𝜀0,𝑟𝑒𝑓)

𝐵2+(𝜀0−𝜀0,𝑟𝑒𝑓)
 (10) 

4.2 Example with GRAZIANI’s experimental data (2019) [7] 

For this study in [7], a bituminous mixture for wearing course with a bitumen binder 

70/100 dosed to 5.3% of the total mass is used. T/C complex stiffness modulus tests 

were carried out for three different deformation amplitudes: 15, 30 and 60 μm/m. The 

samples were cylindrical, D-94 mm x H-120 mm. The experimental data of the sample 

S2 are used here, which have an air void content of 8.5% of the total volume. 

The non-linear viscoelastic modeling parameters for the sample S2 are given in Tab. 

2. Fig. 3, on the left, shows the good fit of the model. On the right, we observe the non-

linearity direction in the COLE-COLE space for different temperatures and frequencies. 

Table 2. S2 sample modeling parameters. 

WLF law for 𝑎𝑇 𝑇𝑟𝑒𝑓 = 14.2 °𝐶 𝐶1 = 30.860 𝐶2 = 196.094 °𝐶 

WLF law for 𝑎𝐴 𝜀0,𝑟𝑒𝑓 = 30 𝜇𝑚 𝑚⁄  𝐴1 = 1.020 𝐴2 = 90 𝜇𝑚 𝑚⁄  

WLF law for 𝑏𝐴 𝜀0,𝑟𝑒𝑓 = 30 𝜇𝑚 𝑚⁄  𝐵1 = −0.0042 𝐵2 = 48 𝜇𝑚 𝑚⁄  

Glass transition reduced pulsation for 𝜀0,𝑟𝑒𝑓 𝜔𝑅−𝑇𝑔,𝑟𝑒𝑓 = 6.10 ∙ 10−3  𝑟𝑎𝑑 𝑠⁄  

Real part 𝑹𝑬(𝝎𝑹−𝑻) for 𝝎𝑹−𝑻 ≥ 𝝎𝑹−𝑻𝒈
 Im. part 𝑰𝜼,𝑹−𝑻(𝝎𝑹−𝑻) for 𝝎𝑹−𝑻 ≥ 𝝎𝑹−𝑻𝒈

 

𝑅𝐸,𝑢𝑝,2 = 27000 𝑀𝑃𝑎 𝐼𝜂,𝑅−𝑇,𝑢𝑝,2 = 2.63 ∙ 106 𝑀𝑃𝑎. 𝑠 

𝜆𝐸,𝑅−𝑇,2 = 4.00 ∙ 103  𝑠 𝑟𝑎𝑑⁄  𝜆𝜂,𝑅−𝑇,2 = 3.30 ∙ 102  𝑠 𝑟𝑎𝑑⁄  

𝑎𝐸,2 = −0.164  and  𝑛𝐸,2 = 2.250 𝑎𝜂,2 = 0.260  and  𝑛𝜂,2 = −0.085 
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Fig. 3. Sample S2 (T/C complex stiffness modulus test, 15-30-60 µm/m) – On the left, plot of 

experimental data and COULON model (T,ω,ε0) above the glass transition reduced pulsation 𝜔𝑅−𝑇𝑔
 

in the COLE-COLE space. On the right, overlay in the COLE-COLE space of the non-linearity tests 

(0 to 100 μm/m over 50 cycles, for different temperatures at 10 Hz) and the complex stiffness 

modulus (50 μm/m) with the use of the COULON(T,ω,ε0) model. To verify the TTSP, one test is 

done to (20 °C, 10 Hz) and another one to (8.1 °C, 0.1 Hz). 

5 Conclusion 

The CLN(T,ω) and (T,ω,ε0) models fit the experimental data accurately without using 

fractional derivatives. Ten parameters are needed for the CLN(T,ω) model for 𝜔𝑅−𝑇 ≥
𝜔𝑅−𝑇𝑔

, sixteen for the complete CLN(T,ω) model and fourteen for the CLN(T,ω,ε0) 

model with 𝜔𝑅−𝑇 ≥ 𝜔𝑅−𝑇𝑔
. Thus, depending on situation, the model is adaptable. 
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