
Chapter 9
Orthology: Promises and Challenges

Yannis Nevers, Audrey Defosset, and Odile Lecompte

Abstract Orthology is a cornerstone of comparative genomics and has numerous
applications in current biology. In this chapter, we first introduce the concepts of
orthology and paralogy. We then present the currently available orthology inference
methods and the community-led efforts of standardization and benchmarking accom-
panying these developments. The large panel of available orthology resources is
compared in terms of species coverage, access, contextual data and tools proposed to
end-users to facilitate the analysis and exploitation of orthology data.We then review
the importance of orthology applications, ranging from the study of protein fami-
lies and information transfer to the comparison of genomes and genotype/phenotype
correlations. Finally, we discuss the current challenges in the orthology field, faced
with an ever-increasing number of proteomes of particularly heterogeneous quality.
We highlight the urgent need of considering orthology at the protein domain and
transcript levels and the conceptual and practical difficulties that this raises.
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9.1 Introduction

Homology is a central concept in biology and is essential for any intraspecies or inter-
species sequence comparison. Originally employed to compare phenotypic traits, it
is now mainly used to define relationships between genomic regions, genes and, by
extension, between proteins or even sub-protein regions. In this context, homology
describes the relationship between two molecular entities (usually genes or proteins)
that descend from the same ancestor. Two main categories of homologs were distin-
guished in the early days ofmolecular biology (Fitch 1970): paralogs that derive from
a common ancestor by a duplication event and orthologs that emerge after a specia-
tion event (Fig. 9.1a). Stricto sensu, these definitions only refer to the evolutionary
history of genes. However, it is commonly accepted that orthologs tend to retain a
similar function, while paralogs may have different fates in the course of evolution.
Indeed, the paralogous copies may develop more specialized functions compared to
the ancestral gene (tissue/stage-specific expression, complementation of functions
initially performed by a single gene) or one copymay evolve a new function under the
reduced selection pressure or even degenerate into a pseudogene (Force et al. 1999).
The ‘orthology conjecture’ states that orthologs frequently retain ancestral function
while paralogs tend to diversify is widely used to transfer functional information
between orthologs. Although this hypothesis is commonly accepted by the commu-
nity, it has been challenged in some cases (Studer and Robinson-Rechavi 2009; Nehrt

Fig. 9.1 Homology relationships. a Evolutionary history of a gene family with duplication and
speciation events. Genes A (in red) present in humans and mouse emerged after a speciation event,
they are orthologous to each other. The same is true for genes B (in blue). Genes A and B are
paralogous between eachother because they are separatedby aduplication event in their evolutionary
history. b Genes A (in red) are only separated by speciation events, they are 1-to-1 orthologs. The
evolutionary history of genes B (in blue) is more complexwith a lineage-specific loss inmouse and a
‘recent’ duplication in fish. Considering the evolutionary history of vertebrates, genes B1 and B2 are
inparalogs to each other and co-orthologs to the human gene B. Thus, there is a 1-to-many orthology
relation between the human gene B and the fish genes B1 and B2 genes. Considering Vertebrates,
genes A and B are outparalogs between each other because they emerged after a duplication that
occurred in the vertebrate ancestor, i.e., before speciations
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et al. 2011), especially among highly similar genes. Nevertheless, it still generally
holds (Altenhoff et al. 2012; Chen and Zhang 2012). Notably, it has been shown that
the organization of introns (Henricson et al. 2010), the three-dimensional structure of
proteins (Peterson et al. 2009) and domain architecture (Forslund et al. 2011) tend to
bemore conserved between orthologs than paralogs. In addition, orthologs are gener-
ally expressed in the same tissues in contrast to paralogs (Kryuchkova-Mostacci and
Robinson-Rechavi 2015).

The debate around the orthology conjecture underlines the importance of taking
into account the chronology of speciation and duplication events to establish func-
tional links between homologous genes. Indeed, paralogs that derive from a ‘recent’
duplication event may still share the same function in contrast to distant paralogs
separated over millions of years of evolution. Unfortunately, there is no objective
threshold to define recent versus ancient paralogs, and in fact, it all depends on the
evolutionary distance between compared species. This has been conceptualized with
the terms ‘outparalogs’ and ‘inparalogs’ coined in 2002 (Sonnhammer and Koonin
2002). When comparing two species, paralogs deriving from a duplication event that
occurred prior to the speciation event are called outparalogs, while paralogs origi-
nating from a duplication event subsequent to the speciation event are called inpar-
alogs. Inparalogs are considered to be co-orthologs of genes descending from the
speciation event in the other species (Fig. 9.1b). Hence, inparalogy and outparalogy
are relative notions: The same paralogous sequences can be considered inparalogs or
outparalogs depending on the speciation referred to. The co-orthology concept also
introduces different orthology relationships: 1-to-1, 1-to-many and many-to-many
orthologs (Fig. 9.1b).

The characterization of these intricate homology relationships is far from trivial
since there is no direct record of past speciation or duplication events, and evolu-
tionary scenarios can be further complicated by lineage-specific gene losses, whole
genome duplications (WGD) and horizontal gene transfers (HGT). WGD or poly-
ploidy can arise within a single species by the doubling of the chromosome set
(autopolyploidy) or can result from the merging of the chromosome sets of two
different species and subsequent genome doubling (allopolyploidy) (see Van de Peer
et al. 2017 for a recent review). Homologs arising by autopolyploidy are called
ohnologs (Wolfe 2000) and constitute a special case of paralogs, since both copies
evolved originally in the same genomic context. Homeologs that result from an
allopolyploidy event are more complex to define (reviewed in Glover et al. 2016) but
are observed inmany plants. Like orthologs, they originally emerge after a speciation
event, but they are subsequently integrated in a single genome through autopoly-
ploidization. Thus, homeologs experience a mosaic fate by initially evolving like
orthologs and then after hybridization, undergoing an evolutionary pressure usually
exerted on paralogs.

In HGT, the relationship does not rely on vertical transmission of genes but on
acquisition of genetic material from another species. Genes whose history since
their common ancestor involves an horizontal transfer are called xenologs (Gray
and Fitch 1983; Fitch 2000). Xenology is especially prevalent in prokaryotes with
HGT frequently involving mobile genetic elements, but it can also occur between
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prokaryotes and eukaryotes (notably in the case of endosymbiosis or endoparasitism)
or even between eukaryotes (reviewed in Soucy et al. 2015). Xenology relationships
encompass a wide range of evolutionary histories, and xenolog classes have been
proposed to reflect the events associated with the divergence of xenologs and the
relative timing of transfer and speciation events (Darby et al. 2017).

The first step in the process of characterization of homology relations is based
on sequence comparison. It is assumed that genes/proteins are homologous if they
exhibit a higher similarity than would be expected by chance. Thus, homology detec-
tion usually relies on similarity searches, typically a BLAST search (Altschul et al.
1997; Camacho et al. 2009), with a fixed threshold of score, percentage identity,
expect-value, etc. The distinction at the genome scale between the different types of
homology (1-to-1 orthology, co-orthology, inparalogy, outparalogy, xenology) then
requires dedicated approaches. The methods used to infer orthology and the corre-
sponding available resources are presented in the first section of this chapter.We then
review the main applications of orthology in biology. In the last section, we highlight
the practical and conceptual challenges around the notion of orthology and its uses.

9.2 Orthology Inference and Resources

9.2.1 Orthology Inference Methods

An exhaustive description of the plethora of available programs is beyond the scope
of this review (for a recent review on methods, see Altenhoff et al. 2019). However,
these different programs can be classified into four main categories: graph-based,
tree-based, hybrid and meta-prediction methods that are presented briefly below.

In graph-based methods, genes/proteins are represented by nodes and homology
relationships by edges in the graph. The graph construction relies on all-against-
all similarity searches between genes/proteins from two genomes. The simplest
approach, called reciprocal best hit (RBH), will predict an orthology relationship
between proteins A and B from two genomes if A is the genome-wide closest rela-
tive of B and vice versa (Overbeek et al. 1999). This approach only considers 1-to-1
orthology relationships, thus overlooking one-to-many andmany-to-many orthologs.
To circumvent this problem and offer a more comprehensive view of evolutionary
relationships, other algorithms have been developed where inparalogy relations are
inferred and included during graph construction. Examples of such methods include
COG (Tatusov et al. 1997), Inparanoid (Remm et al. 2001), OrthoMCL (Li et al.
2003),OMA(Roth et al. 2008), EggNOG(Jensen et al. 2008),OrthoInspector (Linard
et al. 2011) and OrthoFinder (Emms and Kelly 2015). The homology relationships
predicted between a pair of genomes can then be extended to a set of species, in order
to define groups of orthologs (also called orthogroups) present in these species. The
groups are delineated on the basis of the structure of the graph by transitivity or clus-
tering. For instance, OrthoMCL uses Markov clustering to partition the homology
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graph into orthogroups containing highly connected orthologs and recent paralogs.
OMA groups are based on cliques, i.e., fully connected subgraphs corresponding to
genes that are all orthologs to each other, thus de facto excluding orthologs involved
in 1-to-many or many-to-many relations.

Tree-based methods infer orthologs based on the gene’s evolutionary history,
which is reconstructed by reconciling the gene family tree with the species tree.
First, a multiple alignment of homologous sequences is constructed to generate a
phylogenetic tree of the gene family. Then, the nodes of this gene tree are labeled as
duplication or speciation events by comparison to the species tree during the recon-
ciliation step, allowing the prediction of orthology and paralogy relationships. This
type of approach is implemented in numerous programs, including RIO (Zmasek and
Eddy 2002), Orthostrapper (Storm and Sonnhammer 2002), PhylomeDB (Huerta-
Cepas et al. 2007), Ensembl Compara (Vilella et al. 2009), PANTHER (Mi et al.
2010). These methods produce hierarchical ortholog groups, i.e., groups of orthologs
and inparalogs deriving from a common ancestor, in the form of trees. These hier-
archical groups are more informative than simple orthology relationships between
pairs of species or flat groups of orthologs without evolutionary information about
intra-group relations. Unfortunately, tree-based methods are highly dependent on
the construction of correct multiple alignments and trees and are computationally
demanding, preventing their application to very large datasets.

Although hierarchical groups are naturally produced by tree-based methods, they
can also be generated by a post-processing of orthogroups obtained by graph-based
methods. As an example, EggNog and OrthoDB explicitly delineate the hierarchy
of ortholog groups by identifying orthogroups at different taxonomic levels of the
species tree. Hybrid methods go further by using attributes of graph-based and
tree-based methods in the inference of orthology relationships itself. The method
of OMA Hierarchical Orthologous Groups (HOG) (Altenhoff et al. 2013) uses an
orthology graph of pairwise relations to form groups, starting with the most specific
taxonomic level and progressively merging groups toward the root of the species
tree. Hieranoid (Schreiber and Sonnhammer 2013) progressively calculates pairwise
orthology relationships using RBH at each node of a guide tree from the leaves to
the ancestor. At each node, a consensus or a profile is built from the child nodes and
used for subsequent pairwise comparisons, which considerably reduces the number
of required pairwise comparisons. OrthoFinder 2 (Emms andKelly 2019) first identi-
fies orthogroups among a set of species using the OrthoFinder graph-based approach
(Emms and Kelly 2015) and then uses the orthogroups to infer approximate gene
trees and a species tree. Finally, each gene tree is compared to the species tree to
infer duplication events and refine prediction of orthology and paralogy relations.

Meta-prediction methods are designed to exploit predictions generated by
different programs and thus can potentially highlight false positives and negatives.
As an example, DIOPT (Hu et al. 2011) assigns a score to each orthology rela-
tionship according to the number of independent methods predicting this relation.
The MARIO program (Pereira et al. 2014) goes further by delineating a group of
orthologs from predictions of several methods and constructing a hidden Markov
model (HMM) profile of these orthologous sequences. This profile is then used
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to evaluate the predictions made by each individual method. MetaPhOrs (Pryszcz
et al. 2011) integrates phylogenetic trees constructed by several methods to predict
orthology relations and assigns a score depending on the number of predictions.
This filters unreliable results linked to poor resolution of phylogenetic trees. The
WORMHOLE program (Sutphin et al. 2016) uses a classifier based on support
vector machines (SVM) trained on a positive set of validated orthology relation-
ships and a negative set of non-orthology gene pairs. The algorithm assigns a weight
to each prediction method depending on its performance in different test cases (e.g.,
according to the proximity of the species under consideration). This weight is then
used to combine predictions on a complete dataset and extract reliable orthology
relations.

9.2.2 Standardization and Benchmarking

Given the multiplicity of orthology inference methods available, it is crucial to cross-
reference, compare and evaluate their predictions in different biological contexts in
order to choose the relevant program for a given biological question and to improve
prediction methods. This requires a standardization of orthology prediction formats
and an objective benchmarking. These topics are the central goals of the Quest For
Orthologs (QFO) consortium (Gabaldón et al. 2009). QFO addresses both conceptual
issues and technical challenges in orthology prediction. For example, community
efforts led to the development of the standardized OrthoXML format (Schmitt et al.
2011) designed to represent orthology predictions for both graph- and tree-based
methods. An ontology (Fernández-Breis et al. 2016) has also been developed to
formalize the representation of orthology relationships. This ontology allows the
representation of data according to a semantic Web standard, resource descriptions
framework (RDF) that facilitates interoperability between resources.

The QFO consortium has also defined a QFO reference proteome dataset to allow
the comparison of methods on a common set of species and proteins. The dataset
is updated every year and currently comprises 78 UniProt Reference proteomes.
It includes sequences from model organisms, species of interest for biomedical
or agronomic research or species of interest from a phylogenetic point of view
(Sonnhammer et al. 2014). In parallel, a variety of benchmarks have been developed
to evaluate orthology prediction methods according to phylogenetic and functional
criteria. A large-scale benchmarking study (Altenhoff et al. 2016) comparing 15
orthology methods highlighted a trade-off between sensitivity and specificity and
clearly showed that the best approach is highly dependent on the biological context.
Overall, the orthogroup predictions of OMA are characterized by high specificity,
whereas the tree-based method used in PANTHER has high sensitivity. However,
there is no systematic difference between tree-based and graph-based methods.
Finally, Inparanoid, Hieranoid andOrthoInspector as well as OrthoFinder in themost
recent version of the benchmark (results available at https://orthology.benchmarkser

https://orthology.benchmarkservice.org
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vice.org) show a good balance between specificity and sensitivity over all bench-
marks. Orthology predictions from the best methods identified by the benchmarking
are now integrated in the Alliance of Genome Resources (Alliance) portal (Alliance
of Genome Resources Consortium 2020). The Alliance aims to facilitate exploration
of orthologous genes in human and well-studied model organisms in order to exploit
the wealth of genetic and genomic studies available in these organisms.

9.2.3 Orthology Resources

Most orthology inference programs can be installed and executed locally on a user-
defined set of proteomes, but many of them are also used to generate databases
of orthology relationships. These resources are essential for the routine use of the
orthology concept by non-experts. The databases differ in terms of number and diver-
sity of represented species (Table 9.1), which determines the granularity with which
orthology relationships can be exploited. Some generalist databases cover a large
panel of species such as EggNog (Huerta-Cepas et al. 2016), HOGENOM (Penel
et al. 2009), Inparanoid (Sonnhammer and Östlund 2015), MBGD (Uchiyama et al.
2019), OMA (Altenhoff et al. 2018), OrthoDb (Kriventseva et al. 2019) and OrthoIn-
spector (Nevers et al. 2019). EggNog andOrthoDB also include viral genomes. Other
resources are clade-specific, includingTreeFam (forMetazoa) (Schreiber et al. 2014),
FungiPath (for Fungi) (Grossetête et al. 2010), and GreenPhylDB (Rouard et al.
2011) and PLAZA (Van Bel et al. 2018) that focus on plants. With the exception of
MetaPhOrs (Pryszcz et al. 2011), the resources based on meta-predictions generally
focus on a small number of model species (Table 9.1). In addition to the databases
dedicated to orthology, orthology relationships are also provided in more general
biological portals, such as PANTHER (Mi et al. 2019), Ensembl Compara (Herrero
et al. 2016) and HomoloGene (NCBI Resource Coordinators 2016).

Orthology databases offer diverse access to information, via Web interfaces for
manual exploration or using programmatic access throughWeb services or SPARQL
(SPARQL Protocol and RDF Query Language) interfaces. Users can search for
orthologs of a given gene using genes/proteins or orthogroup identifiers or perform
a sequence similarity search. Information can also be accessed through functional
annotation of the gene of interest (keywords, description or GO annotations). For
instance, OrthoInspector (Nevers et al. 2019) allows users to retrieve all proteins of a
given species associated with a given GO term and visualize their evolutionary histo-
ries. OrthoMCL (Chen et al. 2006) and GreenPhylDB (Rouard et al. 2011) propose
searches for groups with a given protein domain. Genes can also be retrieved on the
basis of their phylogenetic distribution, i.e., the presence or absence of an ortholog
in different taxa. This phylogenetic profiling search is implemented in MBGD
(Uchiyama et al. 2019), OrthoDb (Kriventseva et al. 2019), OrthoInspector (Nevers
et al. 2019), OrtholugeDB (Whiteside et al. 2013), OrthoMCL (Chen et al. 2006) and
GreenPhylDB (Rouard et al. 2011). It can be used to perform genotype/phenotype
studies as discussed in the applications section.

https://orthology.benchmarkservice.org
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Table 9.1 Main orthology resources

Inparanoid
OMA

EggNOG
OrthoDb
OrthoMCL
Hieranoid

OrthoInspector
MBGD

OtholugeDb
HOGENOM
PhylomeDb
TreeFam
FungiPath
Greenphyl
PLAZA
P-POD

MetaPhOrs
WORMHOLE

DIOPT
YOGY
HCOP
Panther
Ensembl

Homologene

References: EggNog (Huerta-Cepas et al. 2016), HOGENOM (Penel et al. 2009), Inparanoid
(Sonnhammer and Östlund 2015), MBGD (Uchiyama et al. 2019), OMA (Altenhoff et al. 2018),
OrthoDb (Kriventseva et al. 2019), OrthoInspector (Nevers et al. 2019), OrtholugeDB (Whiteside
et al. 2013), OrthoMCL (Chen et al. 2006), PhylomeDB (Huerta-Cepas et al. 2014), TreeFam
(Schreiber et al. 2014), FungiPath (Grossetête et al. 2010), GreenPhylDB (Rouard et al. 2011) and
PLAZA (Van Bel et al. 2018), PANTHER(Mi et al. 2019), Ensembl Compara (Herrero et al. 2016),
HomoloGene (NCBI Resource Coordinators 2016)
*123 prokaryotic species (mainly Bacteria but also someArchaea) are included in the Pan-Compara
resource which includes a selection of prokaryotic and eukaryotic species

All orthology databases provide orthology predictions in the form of a list of
orthologs in the covered species, but many of them contextualize this minimum
information by adding relevant data and tools to analyze and exploit the evolutionary
information (Table 9.1). Hence, they frequently provide additional information about
the function (GO term annotation, enzyme classification numbers…) or architec-
ture (protein domains) of the predicted orthologs as illustrated in Table 9.1. This
functional information most often comes from automatic annotations that must be
handled with care. However, viewing the annotations for all the orthologs of a protein
makes it easier to detect inconsistencies and spurious annotations. For example,
OMA (Altenhoff et al. 2018) offers a synthetic representation of the GO annotations
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of the detected orthologs with a color code that distinguishes between automatic
annotation, annotation validated by an expert and annotation based on experimental
data. Multiple sequence alignment (MSA) and phylogenetic trees also constitute
an essential analytical tool for a more in-depth understanding of the relationships
between orthologs and paralogs. As such, they are often made available, in particular
by tree-based methods. They are either pre-calculated and available directly on the
Web interface or can be constructed ‘on the fly’ for a selection of predicted ortholo-
gous sequences. In addition, some resources provide information about the genomic
context of the query gene and its orthologs, allowing to detect syntenic stretches
of genes that can be helpful for the validation of orthology relations and may be
indicative of a functional link between syntenic genes. Finally, orthology resources
can provide the taxonomic distribution of detected orthologs in each species repre-
sented in the orthology database. This is suitable for clade-specific resources such
as GreenPhylDb (Rouard et al. 2011) and PLAZA (Van Bel et al. 2018). For gener-
alist orthology resources, a synthetic view of distributions is required as exemplified
by OrthoInspector (Nevers et al. 2019) that provides schematic representations of
phylogenetic distributions at different granularity levels.

9.3 Orthology: The Swiss Army Knife of Genomics

9.3.1 Exploration of Gene and Protein Families

Since their definition in the early seventies, orthologs and paralogs have been tradi-
tionally used to study gene and protein families, in particular in the framework of
multiple alignment analysis. By placing a gene or a protein sequence in its evolu-
tionary context, the multiple alignment reveals selection pressure existing at partic-
ular sequence positions, allowing the straightforward detection of conserved motifs,
localization signals or key functional residues for a considered family of orthologs
or a superfamily regrouping several paralogous families (Lecompte et al. 2001).
Such evolutionary analyses are essential for the determination of catalytic sites or
residues involved in protein interactions for example. This can be exploited to deci-
pher residues, motifs or domains involved in the specificity of paralogous families,
for instance, to identify residues responsible for the enzyme substrate specificity
in a multienzymatic family. In addition, alignments of orthologs or homologs are
exploited in both 2D and 3D structure prediction methods by comparative protein
modeling (reviewed in Khan et al. 2016). With the increase of experimentally deter-
mined structures, a wide range of accurate models are now available that can be used
to predict protein binding sites, effects of protein mutations, and for structure-guided
virtual screening (Liu et al. 2011; Leelananda and Lindert 2016).

Orthologous sequences are directly exploited by many mutation analysis tools,
such as PolyPhen (Adzhubei et al. 2010) or SIFT (Vaser et al. 2016), to predict
the phenotypic effects of variants. Pairwise or multiple alignments of orthologous
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sequences are also used at the genomic level to highlight conserved regions that may
reflect the existence of functional elements. Orthologs are also the cornerstone of
phylogenetic studies aimed at deciphering the evolutionary history of a gene family
or, more generally, phylogenetic relationships between species. The reconstruction
of phylogenetic relationships between species has for a long time relied on a single
family of genes, typically 16S/18S rRNA genes or well-conserved housekeeping
protein genes. Today, species phylogenies can be built using comparisons of several
protein families, including genome-wide comparisons (Crawford et al. 2012). These
studies generally focus on widely conserved protein families exhibiting one-to-one
orthology relationships. Orthofinder directly exploits orthogroups within a species
set to construct a phylogenomics species tree using the species tree from all genes
(STAG) algorithm (Emms and Kelly 2018). With the multiplication of available
genomes and metagenomes, such phylogenomics analyses have renewed our vision
of the tree of life, for instance, by highlighting the bacterial diversification (Hug et al.
2016), reshaping the eukaryotic tree (Burki et al. 2020) and revealing a new group
of Archaea, the Asgard that questioned the position of Eukaryotes in the tree of life
(Spang et al. 2015; Zaremba-Niedzwiedzka et al. 2017).

Orthologous sequences and phylogenetic trees can also be exploited for ancestral
sequence reconstruction. The leaves of the phylogenetic tree represent the extant
sequences of the family, while the root corresponds to the extinct common ancestor.
The ancestor can be synthesized to experimentally explore its biochemical properties.
This approach allows to resurrect an ancestral precursorwith selected properties, such
as thermostability, in order to initiate synthetic evolution experiments (Gumulya
and Gillam 2017). It can also be used to decipher past environmental conditions.
For example, the reconstruction of translation elongation factors from organisms
that lived 3.5 billion years ago revealed that the thermostability of these factors
declines in the course of evolution and suggested a 30 °C decrease in environmental
temperature (Gaucher et al. 2008). Ancestral sequence reconstruction methods also
deduce the sequences present at each internal node of the tree. These intermediate
states can help to elucidate evolutionary processes, in particular the main mutations
involved in the distinct properties of extant proteins (Straub andMerkl 2019).Applied
to whole genomes, ancestral reconstruction offers a partial view of ancestral gene
repertoires, from the known repertoires of extant species. Such a resource is available
on the ancestral genome portal, constructed fromPANTHER inferences (Huang et al.
2019).

9.3.2 Information Transfer

As stated above, orthologous genes tend to retain equivalent functions across species
and are thus widely used to transfer information from model species to poorly char-
acterized ones. Typically, the functional annotation of genes in a newly sequenced
genome is carried out by identifying annotated orthologs using similarity searches
in protein databases such as UniProt (The UniProt Consortium 2019) or through the



9 Orthology: Promises and Challenges 213

Gene Ontology (The Gene Ontology Consortium 2019) and then transferring these
annotations to genes of unknown function. Several protocols (compared inAmar et al.
2014) allow this automated annotation transfer. Although this approach is time effi-
cient, it can also lead to bias since the orthology conjecture is not an absolute law and
the ortholog/paralog distinction is not trivial, especially in superfamilies (Schnoes
et al. 2009). The problem of misannotation is also particularly severe, with multi-
domain proteins exhibiting a differential conservation of some domains (discussed in
Sect. 9.3.3 Beyond gene level orthology). In addition, automated transfer can prop-
agate annotation errors. It is therefore wise to rely on closely related orthologs with
expert-curated annotations, whenever possible, to avoid the ‘percolation of annota-
tion errors’ modeled by Gilks and colleagues and its deleterious effects on database
quality (Gilks et al. 2002).

More generally, orthology can be used to transfer experimentally evidenced infor-
mation obtained from one species to another, provided that the organisms are suffi-
ciently close. This principle is used by the Gene Ontology Consortium (Ashburner
et al. 2000; The Gene Ontology Consortium 2019) to propagate standardized annota-
tions not only on proteinmolecular function but also on their sub-cellular localization
and the biological processes in which they are involved. The resulting annotations
receive the IEA evidence code (Inferred from Electronic Annotation) in the case of
an automatic transfer between orthologs. The Gene Ontology also integrates a semi-
automated transfer protocol (Gaudet et al. 2011), taking into account annotations
from several orthologs and the phylogenetic relationships between the corresponding
species. These annotations are labeled with the IBA code (Inferred from Biological
ancestry).

Information about protein–protein interactions (PPIs) can also be transferred
from one species to another through the concept of interologs. The term ‘interolog’
(Walhout et al. 2000) refers to the conserved interaction between two pairs of proteins
A1 and B1 from a first species and A2 and B2 from a second species. The A1/B1
interaction is considered as an interolog of the A2/B2 interaction if A1 and A2 are
orthologs to B1 and B2, respectively. The concept of interology can be exploited in
a predictive way: Orthologs of interacting proteins in one species are identified, and
the PPI information is transferred to the pair of orthologs. To avoid false positive
errors, interology inferences are usually combined with other data, as illustrated by
the STRING interaction database (Szklarczyk et al. 2019) that relies on a large panel
of diverse evidence (experiments, text mining, co-expression, synteny, etc.).

Finally, when working on human genes, orthology relationships are key elements
to consider when choosing a relevant model species for experimental studies. In
addition to practical considerations (duration, cost, etc.), the model species should
be chosen to avoid 1-to-many or many-to-1 orthology relations between the human
and the model species, since the existence of additional inparalogs in one species
would considerably complicate the interpretation of experimental results.
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9.3.3 Comparison of Genomes and Proteomes

Comparisons of complete genomes and proteomes are intrinsically linked to the
proper delineation of orthologs and paralogs. Comparisons of orthologs at the
sequence level are used to evaluate the selection pressure acting to model evolu-
tionary rates in different species. One of the first examples of such genome-wide
assessment of evolution rates was carried out in mammalian and nematode lineages
(Castillo-Davis et al. 2004). This study showed that strong purifying selection seems
to act on the same central cellular processes (such as translation and protein trans-
port) inmammals and nematodes, whereas positive selection acts on different biolog-
ical processes in each lineage (DNA-dependent transcriptional regulation in nema-
todes, signal transduction via receptors and host immune response in mammals).
Such comparative analyses are also performed for non-coding RNA genes such as
microRNA. For example, the study of microRNA substitution rates in human and
chimpanzee genomes revealed that primate-specific microRNAs have twice as many
substitutions as older microRNA families (Santpere et al. 2016).

Comparison of proteomes in terms of gene content has become a quasi-obligatory
step when sequencing a new genome. It requires the prediction of orthology and
paralogy relations between the proteomes under consideration and reveals the set of
conserved protein families but also the acquisitions and losses that have taken place
independently in each lineage. These comparisons have highlighted the extraordi-
nary plasticity of the gene repertoire among species. This is particularly striking
in the case of prokaryotic genomes. In a comparison of more than 500 bacterial
species, Lapierre and Gogarten (2009) showed that the conserved bacterial core was
reduced to about 250 gene families, with the notable exception of certain symbionts
exhibiting a particularly reduced genome. This diversity of gene repertoire observed
even among closely related species can be explained by lineage-specific expansion of
gene families, acquisition of genes by horizontal transfer (xenologs) and differential
gene losses. In some prokaryotes, the genomic versatility is so important that large
differences in gene content can occur between different strains of the same species.
This led to the definition of the pangenome concept, i.e., the set of all genes present in
a given species, that can be divided into the conserved core and the accessory genome
(reviewed in Brockhurst et al. 2019). In species with an ‘open’ pangenome, the core
genome conserved in all strains represents only a small fraction of the pangenome,
questioning the concept of species in Prokaryotes. For instance in Escherichia coli,
the core genome is restricted to about 3000 gene families, while the pangenome
reaches a total of about 90,000 families (Land et al. 2015).

Comparisons of orthologous genomic regions or complete chromosomes decipher
the evolution of genomearchitecture by revealing differential gains/losses of genomic
regions, segmental duplications and balanced rearrangements. These comparisons
can be made at the nucleotide level using, for example, BLASTZ (Schwartz et al.
2003) or LASTZ and chaining/netting programs (Kent et al. 2003) to discriminate
between orthologous and paralogous alignments. Alternatively, the comparison of
genomic regions can be based on the comparison of genomic location of orthologs in
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different genomes to identify conserved syntenic blocks, i.e., a stretch of genes with
a conserved gene order in different species. Such comparisons delineate syntenic
genes frequently linked by functional relations and allow the detection of elements
involved in genomic plasticity at the syntenic regions boundaries. They are also used
to reconstruct ancestral genomes with distance/event-based or homology/adjacency-
based methods (reviewed in Feng et al. 2017).

9.3.4 Functional Inferences and Genotype/Phenotype
Correlations

Comparisons of complete proteomes based on orthology relationships can be
exploited to perform functional inferences between genes or to detect genes poten-
tially involved in a phenotype. The rationale behind this approach is that functionally
linked genes are preserved or lost in a correlated manner over the course of evolution
and thus are found in the same species (Pellegrini et al. 1999). This assumption can be
exploited in different ways. Subtractive analysis aims to identify genes restricted to
species with a given phenotype. In practice, this means comparing the gene repertoire
of at least two species (species A and B) possessing the phenotypic trait of interest
and one or several related species (species C) lacking the considered phenotype.
The set of genes with orthologs in species A and B but without orthologs in species
C is likely to be enriched in genes associated with the phenotypic trait of interest.
This approach was introduced by Huynen (Huynen et al. 1998) in the early days of
comparative genomics in order to compare the genome of the pathogen Helicobacter
pylori with that of another pathogen Haemophilus influenzae and a benign strain of
E. coli. They identified 17 gene families restricted to the pathogenic species and
potentially involved in virulence and host–pathogen interactions.

The subtractive method is applicable to the search for genes linked to a pheno-
typic trait or biological process that has been lost/acquired in some species during
evolution. This approach can be extended to the comparison of tens or hundreds of
genomes to allow a precise definition of the phenotypic distribution. The compar-
ison of phylogenetically distinct lineages that have independently acquired (or lost) a
given phenotype limits false positive predictions by eliminating genome differences
simply due to random gains and losses of genes. For instance, Hecker and colleagues
(Hecker et al. 2019) compared mammalian genomes to identify convergent gene
losses associated with dietary adaptations in six independent herbivore lineages (16
species) and five independent carnivore lineages (15 species). Regarding the small
evolutionary distances separating these placental mammals, they considered not only
loss of entire genes or exons but also gene-inactivating mutations, using a genomic
approach that combines the identification of orthologous regions and the CESAR
program, a coding exon-structure aware realigner (Sharma et al. 2016).
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At a larger evolutionary scale, another methodological framework is required.
Phylogenetic profiles represent a generalization of subtractive analysis allowing the
comparison of a large number of genomes that can be evolutionary distant. A phylo-
genetic profile of a gene represents the presence or absence of orthologs of that gene
in the genomes of several species (Tatusov et al. 1997). Phylogenetic profiles were
first used to infer the function of uncharacterized genes, and the method has been
successfully applied to the annotation of genes, mainly prokaryotes (see Kensche
et al. 2008 for examples). They are also exploited to predict functional links between
genes, notably in the STRING (Szklarczyk et al. 2019) and OrthoInspector databases
(Nevers et al. 2019).

Phylogenetic profiles can not only be compared to each other but also to all types of
presence–absence distributions, including phenotypic traits. Phylogenetic profiling
can thus be exploited to perform phenotype-genotype association studies. One of
the first studies of this type was carried out on 86 prokaryotic genomes to identify
genes associated with thermophily (Jim et al. 2004). Since then, many similar studies
have been performed, notably to identify genes involved in human diseases thanks to
the huge increase of available eukaryotic genomes that allows a detailed exploration
of the distribution of human genes. For instance, Tabach et al. (2013) identified 54
clusters of phylogenetic profiles associated with a specific class of symptoms. More
recently, the profiling of human genes in 100 eukaryotic species revealed 274 human
genes exhibiting a phylogenetic distribution correlatedwith the distribution of cilia in
eukaryotic lineages (Nevers et al. 2017). This set of predicted ciliary genes includes
87 new candidates. Among them, 21 have already been experimentally validated as
ciliary genes.

9.4 Challenges

9.4.1 Keeping Up with the Data Flow

As seen above, orthology is the cornerstone of a plethora of applications in compar-
ative genomics and biology, and orthology resources provide numerous contextual
data and analytical tools to facilitate orthology exploitation. Coming into a new
decade, they are now gearing up to adapt to new challenges, a data flow brought by
the next generation sequencing and a need to assess orthology at different granularity
levels. The last two decades have seen a massive increase in sequencing capacities,
leading to the acquisition of numerous genomes from across the tree of life. These
genomes have obvious usefulness for studying evolution at a broad scale and are
increasingly incorporated into orthology resources. Nevertheless, they also lead to
important challenges linked to the management and analysis of the ever-increasing
volume of data and the heterogeneous data quality.
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Genomic data, hence genome annotations, have been increasing at an exponential
rate with the advent of high-throughput sequencing technologies. As of today, 19,163
complete genomes are registered in the Genome Online Database (Mukherjee et al.
2019), as well as 215,613 genomes in the permanent draft state. This increase in
data generation represents a challenge for orthology resources. It is especially true
for tree-based approaches, which are commonly more computationally intensive
as they rely on phylogenetic tree inference tools and are traditionally limited in
the number of species they can include. While less computationally intensive, the
data increase is still onerous for graph-based approaches, as they rely on all-vs-all
sequence comparisons, which grow quadratically with the number of sequences. The
legacy tools for these kinds of comparison, namely BLAST (Altschul et al. 1990;
Camacho et al. 2009) or Smith-Waterman (Smith and Waterman 1981) alignment,
do not scale well, and resources that use them rely heavily on high-performance
computing clusters. Other tools and resources use faster but generally less sensitive
solutions: MMSeq2 (standard modes) (Steinegger and Söding 2017), DIAMOND
(Buchfink et al. 2015) or ad-hoc methods as in SwiftOrtho (Hu and Friedberg 2019)
for instance can perform all-vs-all comparisons with better performances.

Nonetheless, solutions bypassing computationally intensive all-vs-all computa-
tions are increasingly being investigated, in anticipation of an even bigger surge in
data. These approaches such as EggNog-Mapper (Huerta-Cepas et al. 2017) aim
to reduce the computation required to adding new proteomes by exploiting already
precomputed ortholog groups that are assumed to be stable over time. Their goal is to
use fast methods, e.g., hidden Markov models (Eddy 2011) or k-mer based sequence
similarity searches, to identify likely existing orthologous groups in which each
sequence fits. While fast, these methods rely on existing databases with sufficient
clade coverage to be efficient.

Another aspect of data management, linked to computational time, is the size of
databases produced. Storing a high number of orthologous relations or orthologous
size implies storing Terabytes of data and induces longer access times to the data.
Consequently, it is not necessarily optimal for orthology resources to include all
available genomes, and a choice is often made concerning which data to select, with
high variability of species chosen in each orthology resource. This is reflected by
the number of species available in different resources and variable representation
in terms of clades or domains of life. Notably, some resources specialize in specific
clades such as Plaza (VanBel et al. 2018) for plants or FungiPath for fungi (Grossetête
et al. 2010). Even among the databases with a large number of species, a wide diver-
sity of species is preferred rather than sheer number, as diversity is generally more
important than number in comparative studies (Škunca and Dessimoz 2015). This
can be achieved by limiting additional species to new taxa of interest or by limiting
inter-clade computations to fewer species (Nevers et al. 2019) with several levels of
taxonomic resolution. The decision to add or keep a species in an existing database is
a product ofmultiple factors butmay be informed by indicators of how the addition of
one species affects the diversity. For example, the rarefaction curve proposed by the
KinFin analysis tool (Laetsch and Blaxter 2017) (compatible with some orthology
inference software suites) provides an objective measure of the novelties in terms
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of orthogroups added by each included species. Favoring diversity is also benefi-
cial for the fast-placing strategies mentioned above, moving toward resources with
a limited number of species computed directly with the all-versus-all strategy, and
other species added to existing groups using less computationally intensive strategies.

9.4.2 Addressing Proteome Quality

Another aspect of high-throughput data is the associated data quality issues, and the
genomic data used in comparative genomics studies are no exception. Proteomes,
i.e., the genome annotations of protein coding genes from genomic data result from
a multi-step process ranging from genome sequencing to the actual annotation of the
final assembled sequences, with multiple possible sources of error. Consequently,
a proteome may have missing proteins (either being permanent draft or a misanno-
tated complete genome) or contain proteins that are either fragmented or actually
erroneous. All of these cases may in turn induce errors in orthology inference that
rely heavily on sequence comparison and in comparative genomics approaches that
assume data completeness.

Missing proteins, for instance, lead to missing orthology relationships between
specieswith incomplete genomes and other species.Most orthology pipelines assume
data completeness when inferring orthology, and while they are in principle robust
to gene losses, incomplete gene sets may lead to errors in orthology inference
and in orthogroup reconstruction. Some methods, e.g., Hamstr (Ebersberger et al.
2009) and OrthoGraph (Petersen et al. 2017) are designed to avoid this assump-
tion by first excluding incomplete datasets (e.g., issued from RNA-seq data) during
orthogroup construction. Sequences from the incomplete datasets are thenmapped to
the precomputed robust orthogroups. Even with correct orthology inference, incom-
plete genomes impact the phylogenetic placement of species, as fewer marker genes
are available. This is particularly detrimental when relations between species are hard
to resolve. More spectacularly, artificially missing proteins constitute a significant
source of errors for comparative genomics methods relying on comparison of entire
species gene repertoires, e.g., phylogenetic profiling.

Fragmented proteins are another matter and initially have an impact on orthology
prediction via sequence similarity comparisons. For example, if a fragmented protein
sequence corresponds to a single domain, reciprocal best hit methods may infer a
false positive pairwise relation with a protein in another species having a homol-
ogous domain, although the full-length protein would not be identified as ortholo-
gous. Conversely, if the protein fragment corresponds to a low complexity, repeat-
containing or divergent region, similarity based orthology prediction methods will
miss it, leading to false negatives and in the worst case, may even be responsible
for spurious relations (false positives). It is worth noting that issues caused by this
kind of region, amplified in the presence of fragments, constitute a general limit of
similarity-based orthology inference methods in any organism.
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Fig. 9.2 Protein length distribution in four proteomes, from various vertebrate clades. On the
left are examples of the distribution observed in well-studied species (Homo sapiens and Danio
rerio), similar to the one observed in most proteomes. On the left, examples of atypical distribu-
tions with high number of small proteins for the rodent Cricetulus griseus and the chondrichthyes
Chiloscyllium punctatum

A stark difference in proteome data quality is revealed by analysis of the distribu-
tion of protein length between publicly available proteomes. For example, Fig. 9.2
shows the protein length distribution, normalized for proteome size, in four vertebrate
species. Most proteomes share a distribution centered on a peak in the range of 200–
400 amino acids and a decreasing number of long proteins, as illustrated by Homo
sapiens and Danio rerio (Fig. 9.2). In contrast, some proteomes present a peak for
small proteins (less than 100 amino acid long), as exemplified by the other proteomes
presented on Fig. 9.2. Strikingly, all manually curated proteomes of model species
have the former distribution, and both distributions are distributed across the species
tree, ruling out biological exceptions (Nevers et al. in prep). Instead, it indicates a
high number of truncated or erroneous proteins.

One must thus be cautious when providing annotations of genomic data to public
databases or using these data for orthology inference and comparative genomics.
Quality measures exist to indicate the quality of genome assembly, N50 being a
standard indicator of genome contiguity that is commonly provided with published
genome assemblies. However, genome assembly quality does not necessarily corre-
latewith proteome annotation quality. State-of-the-art tools exist that provide an indi-
cation of data completeness and fragmentation. For instance, CEGMA (Parra et al.
2007, 2009) and its successor, BUSCO (Waterhouse et al. 2018) make use of known
conserved gene families, so-called core orthologs, in single-copy in most species for
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the latter, to assess the completeness of the gene annotation for a given genome. The
assumption being that the proportion of core orthologs found in a genome reflects
the completeness of the gene annotation as a whole. BUSCO provides additional
information about the state of the proteome, by indicating which proportion of core
orthologs are found only in a fragmented state. Assessing BUSCO completeness
is standard practice when publishing new genomes, and this information is now
available in UniProt (The UniProt Consortium 2019) for most available proteomes.

However, empirical data show that BUSCO completeness assessment is not
always correlated to the standard protein length distribution, suggesting that it does
not capture all cases of genome misannotation. A better proxy of this bias can be
obtained in the form of summary statistics, such as the proportion of extremely
short proteins in the genome or the number of proteins annotated as not starting
with a methionine (i.e., annotated genes for which no start codon was found by the
annotation pipeline). These summary statistics can be used to filter genomes used in
orthology analysis (Nevers et al. 2019), by setting thresholds under which proteomes
are considered as not annotated. As these parameters are nearly orthogonal to core
ortholog completeness, they can be used in parallel with methods like BUSCO and
CEGMA to identify low quality proteomes. Despite these developments, work is still
needed to further assess proteome quality and its impact on downstream applications,
and this issue is an important target for future community efforts.

9.4.3 Beyond Gene-Level Orthology

While most orthology prediction methods are based on full-length gene or protein
sequences, in certain cases, functional domains might be a more pertinent entity
to consider. Indeed, the majority of known proteins consist of multiple domains,
especially in the eukaryotic lineages, and it is known that multi-domain architectures
tend to evolve over time as a result of different mechanisms, such as domain gains,
losses and duplications, or gene fusion and fission (Buljan and Bateman 2009). The
latter in particular can result in complex evolutionary histories for geneswith domains
of very different ancestral origins, which in turn makes orthology relations more
complicated. In addition, domain architecture rearrangements have been observed
several times between orthologs of species belonging to different phyla, possibly as a
consequence of different organism complexity (Koonin et al. 2000, 2004). However,
studies have shown that domain rearrangements can occur between relatively close
species, such as mammals or members of the Drosophila genus, and it has been
estimated that they could concern up to 50% of proteins (Forslund et al. 2011; Wu
et al. 2012; Sonnhammer et al. 2014).

Divergences of domain content and/or order between orthologs can be challenging
for traditional orthology inference methods. In some cases, parts of the protein
sequence might be too highly divergent in some species to be properly detected
as orthologs. In other cases, one protein might have significant similarity to multiple
different protein families, each due to a different domain of the query protein, making
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it hard to clearly establish orthologous relations. This shows a clear limitation of full-
length analyses, as they ignore the natural tendency of proteins to be modular and to
evolve not at the complete sequence level, but at the domain level. It would be bene-
ficial to focus future improvements and developments on domain-aware orthology
inference as a complement to full-length methods, in order to predict more precise
ortholog relations and better understand architectural rearrangements in protein
evolution. While it has been widely acknowledged that such methods are needed
(Sjolander et al. 2011), very few currently take domains into account. Exceptions
include the microbial genome database MBGD, which constructs ortholog groups
at the domain level (Uchiyama et al. 2019), and Domainoid (Persson et al. 2019), a
tool that uses Pfam (El-Gebali et al. 2019) defined domains to infer orthology rela-
tions at the single level domain. Domainoid has been shown to retrieve orthologs not
detected by classical full-length approaches, thus showing the interest of combining
both types of strategies.

Another hassle of focusing on gene-level orthology is that, in Eukaryotes, a single
gene may be transcribed into several isoforms with different exons combinations.
This process, called alternative splicing, is especially prominent in vertebrates (Keren
et al. 2010). Its functional implication is debated, but it has been shown for particular
genes that different isoforms may have different tissue expression and even some-
times produce proteins with antagonist cellular functions (Wang et al. 2008). This has
direct implications on thewayorthology is used to transfer function between genes, as
two orthologous genes could display different splicing patterns and even two orthol-
ogous genes with orthologous exons may have substantially different transcripts.
Integrating homology between alternative transcripts of orthologs will provide addi-
tional information on whether an evolutionary conserved isoform is more likely to
be functional, and whether observations made in a model species on a particular
isoform are likely to be applicable to other species.

Assessing orthology between alternative transcripts often relies on two conditions
(Blanquart et al. 2016). Indeed, transcripts are orthologous if (1) they are transcripts
of orthologous genes and (2) their exons are similar enough to assume they are
orthologous and appear in the same order in the gene sequence. The first condition is
a classical orthology inference problem. The second conditionmay be determined by
spliced sequence alignment, using an exon-aware alignment method (Kapustin et al.
2008; Gotoh 2008; Sharma et al. 2016; Jammali et al. 2019). Transcript orthology
prediction has been successfully employed to identify orthologous isoforms between
the gene repertoires of mouse and human (Zambelli et al. 2010). Applying it to more
species is trickier since it cannot be done with pairwise relations and requires the
construction of gene trees, which is computationally demanding. Nonetheless, it has
been used to study multiple gene families, mapping events of isoform gains and
losses to the branches of the trees (Christinat and Moret 2012; Jammali et al. 2019).
Nevertheless, one must still be cautious when using isoform orthology determination
and ensure that expression of both isoforms can be detected through experimental
means in the species of interest, to avoid the pitfalls of erroneous annotation transfer.
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As can be seen, despite the major advances made in recent years in orthology
inference and resources, there is still a long way to go in the quest for orthologs.
The practical and conceptual challenges are numerous and will require the efforts
of the entire comparative genomics community to invent new solutions. Substantial
progresswill be neededboth in the development of new indicators of proteomequality
and for the formal representation of orthology relationships at different granularity
levels.
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