
J Syst Sci Complex (2020) 33: 1�30

A Review on Complex System Engineering

PARREND Pierre · COLLET Pierre

DOI: 10.1007/s11424-020-8275-0
Received: 19 September 2018 / Revised: 25 January 2019
c©The Editorial O�ce of JSSC & Springer-Verlag GmbH Germany 2020

Abstract Complexity is commonly summarized as `the actions of the whole are more than the sum
of the actions of the parts'. Understanding how the coherence emerges from these natural and arti�cial
systems provides a radical shift in the process of thought, and brings huge promises for controlling and
fostering this emergence. The authors de�ne the term `Complex System Engineering' to denote this
approach, which aims at transferring the radical insights from Complex System Science to the pragmatic
world of engineering, especially in the Computing System Engineering domain. A theoretical framework
for Complex System Engineering is built by the morphogenetic engineering framework, which identi�es
a graduation of models, in growing order of generative power. The implementation of Complex System
Engineering requires a portfolio of operational solutions: The authors therefore provide a classi�cation
of Complex System application approaches to answer this challenge and support the emergence of
Complex System Engineers capable of addressing the issues of an ever more connected world.

Keywords Complex networks, complex software engineering, complex systems, design structure ma-
trix, emergent engineering, evolutionary algorithms, organically grown architectures.

1 Introduction

Complexity �rst denoted the property of objects with many interconnected parts[1]. The

term is now used to express the behaviour of systems which coherence is drawn from parts

interacting locally, such as �nancial markets, rainforest ecosystems, living organisms, the In-

ternet: Emergence. It is commonly summarized as `the actions of the whole are more than the

sum of the actions of the parts'. Understanding how coherence emerges from these natural and

arti�cial systems provides a radical shift in the process of thought, and brings huge promises

for controlling and fostering this emergence: In an ever more connected word, being able to

control the dynamics of multi-scale systems is a critical skill for success.

However, as stated by Edgar Morin, complexity `cannot be reduced to a simple idea', it

`cannot be reduced to a law of complexity'[2]. It is therefore hopeless to expect the expression

PARREND Pierre

ECAM Strasbourg-Europe, 2, Rue de Madrid, Schiltigheim, France. Email: pierre.parrend@ecam-strasbourg.eu.

COLLET Pierre

University of Strasbourg, Strasbourg, France. Email: pierre.collet@unistra.fr.
�This paper was recommended for publication by Editor DI Zengru.



2 PARREND PIERRE · COLLET PIERRE

of simple laws, or a restricted body of knowledge, of complexity. Our research e�ort in the

application of complexity to engineering problems thus draws on the properties of Complex

Systems, aims at identifying common methodological patterns, and strive to expose pragmatic

solutions both from the scienti�c literature and in our own contributions.

In this paper, we highlight the research challenges we focus on in this work in Section 2.

Subsection 2.2 explicits the way science and engineering interact and complement themselves.

Section 3 presents the main contributions of the �eld of complex system engineering, and

Section 4 introduces signi�cant applications.

2 Research Challenges

2.1 Engineering and Complex Systems

The �eld of Complex System Engineering emerges from breakthroughs in the community

of morphogenesis[3], embryogenesis[4] and arti�cial life[5], which enable to model and emulate

the emergence of heavily interdependent processes such as life. The ability to understand and

reproduce these processes provides the basis for building arti�cial systems with high levels of

emergence and interdependencies between their parts.

The research challenge we seek to address is thus:

How to exploit the results of Complex System science for understanding and building arti-

�cial complex systems?

Our approach is to explicit the di�erent types of complex system models and their applica-

tion scope to make them actionable for the design of original arti�cial complex systems.

2.2 Engineering and the `Science of the Arti�cial'

Since we aim at building arti�cial complex systems, a pre-requisite for our work is to de�ne

engineering as a science. A beautiful de�nition is given by Herbert Simon in `The Sciences

of the Arti�cial'[6]: A strong distinction is to be made between the Science of the Arti�cial,

i.e., the Science of Engineering and Engineering Sciences. The Science of the Arti�cial intends

to provide a generic analytic framework to investigate arti�cial systems. Engineering sciences

de�ne a normative framework for building such systems e�ciently.

The research objects of the science of the arti�cial hold four major characteristics[6]:

1) Arti�cial things are synthesized by human being;

2) They may imitate appearances of natural ones while lacking the reality of the latter;

3) They can be described in term of functions, goals or adaptations;

4) They are often discussed in term of imperative as well as descriptive.

Herbert Simon also places a lot of emphasis on the distinction between the Science of the

Arti�cial, which aims at understanding arti�cial constructs, and the `Science of Design', i.e., the

conception of these `arti�cial things'. This `Science of Design' builds the basis of Engineering

science, as the set of natural laws and technical tools necessary to build and operate arti�cial

things from the material, mechanical, electronics, computing or engineering domains.

Whereas we aim at transferring knowledge and tools from Complexity Science to Engineering



A REVIEW ON COMPLEX SYSTEM ENGINEERING 3

Science, the discussion on the `science of the arti�cial', the object of interest, speci�c scienti�c

methods, and observed properties of the objects under investigation, build a major aspect for

understanding the background of our contributions.

3 The Models of Complex System Engineering

This section illustrates processes for engineering complex systems through three points of

view: the architecture, the model, and the process. Architecture design for Complex System

engineering is highlighted by the example of research on arti�cial cognition and the quest

for reproducing the brain functions[7, 8], which emerge from the interconnection of individual

neurons. The model types and metrics signi�cant for their evaluation are then detailed[9, 10]. A

classi�cation of processes for building arti�cial complex systems is presented, using the reference

model of organically grown architectures[11].

3.1 Architecture Design and Complex System Engineering: The Brain Model

Example

The question of the capability of machines to act like humans was popularized as early

as 1950, when Turing published his famous `imitation game'[12] which de�nes an investigation

protocol for evaluating whether a machine can lure a human and make it impossible for him to

decide between two interlocutors which one is the human one.

The quest for `intelligent' machines is pervasive to the history of computer science and

expands far beyond the scope of this work. However, the breakthroughs achieved since the 2000's

are signi�cant of the challenges of building nature-inspired, arti�cial systems. Two opposite

approaches coexists: The in-silico simulation of natural systems, and the reproduction of system

features and properties, with possibly signi�cant deviations or simpli�cations from the original

model. In the case of brain modelling, these two approaches are large brain simulations[13],

on the one hand, and biologically inspired cognitive architectures[14], on the other. IBM Blue

Brain project is representative of the former[15], and the cat's model of Modha, also from an

IBM Team, of the latter[7]. The two projects are signi�cantly di�erent: Markram intends to

reproduce and understand the behaviour of a real brain, whereas Modha focuses on the brain as

organised complexity and on the reproduction of the organ's features. Other projects, such as

the CAM-Brain project[16] using FPGA technology, deploy a similar feature-oriented approach.

The operational approach of Modha is typical of the approach we explore for designing and

building arti�cial complex systems: Our goal is not to perform breakthrough in natural sci-

ences, but to contribute to the engineering domain. Brain-like architectures typically based on

the hypothesis that `the computational building blocks of the brain (neurons and synapses) can

be described by relatively compact, functional, phenomenological mathematical models, and

that their communication can be summarized in binary, asynchronous messages (spikes)'[7].

This approach considers that `the behaviour of the brain apparently emerges via non-random,

correlated interactions between individual functional units, a key characteristic of organized

complexity. Such complex systems are often more amenable to computer modelling and sim-

ulation than to closed-form analysis and often resist piecemeal decomposition'. This strategy



4 PARREND PIERRE · COLLET PIERRE

is considered in Modha's approach to have brought breakthrough contributions and impressive

results.

Another functional model of the brain is the Wang's model[8]. Although it provides fewer

evaluations of the actual performance of the system, it proposes a complete conceptual frame-

work for cognition. It de�nes the interactions with the outer world, the bu�er, short-term and

long-term memory processes, and de�nes two processing types, the subconscious life function

(NI-OS: Natural Intelligence � Operating System) and the conscious life functions (NI-App:

Natural Intelligence � Applications), as depicted in Figure 1.

Figure 1 A functional model of the brain[8]

Figure 2 shows the the Layered Reference Model of the Brain (LRBM)[8], which speci�es

the di�erent, layered functions of natural intelligence at a smaller scale than the functional

model: Sensation, memory, perception, action, meta-cognitive functions, and higher cognitive

functions.

The challenges of modelling the brain are well representative of the research issues we face in

the domain of complex system engineering: The choice between copying the natural interactions

or reproducing natural features, the control of emergent interactions between system parts,

and multi-layer modelling. It nonetheless introduces a signi�cant simpli�cation compared to

other systems, since a brain model is per de�nition a centralised system, whereas emergence

is also a key property of distributed, heterogeneous systems. We focus here on the macro and

architectural challenges, and voluntarily neglect model-internal representations.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 5

Figure 2 The layered reference model of the brain (LRBM)[8]

3.2 Modelling Complexity

The second challenge of Complex System engineering is the actual modelling approach used

to represent the system and to make it operational. One needs to master the stability of complex

engineering systems, and to avoid collapse which may emerge from inadequate optimality[17]:

In engineering, complexity is often viewed as a source of unsustainability[18]. Its sources can

be manifold: Design and product development complexity, manufacturing complexity, business

and market complexity[19].

Models of complex systems pertain to two families of systems, matching two very di�erent

sets of properties: Self Organised Criticality (SOC), and Highly optimized tolerance (HOT)[20].

The properties of Self Organised Criticality characterize systems which are homogeneous, self-

similar, robust, like algorithms based on arti�cial ants. Highly Optimized Tolerance (HOT)

occurs in structured, heterogeneous, self-dissimilar, robust yet fragile systems[9, 20]. The brain

model is representative of the HOT property.

One important issue while modelling complex systems is the ability to keep the control over

the complexity, in particular by tracking the `complexity level' of the system. Very few solutions

exist for this: The statistical complexity is one of them. It has been introduced in the context

of manufacturing processes. Statistical complexity Cmu is de�ned as the Shannon entropy over

the distribution of causal states. P (Si) denotes the probability of the machine being in state

Si
[10]:

Cmu =
∑
Si∈S

P (Si) ∗ log2(P (Si)). (1)

Statistical complexity Cmu is the average amount of historical memory stored in the pro-

cess, in bits. In a complex process, more information about the past is stored internally either



6 PARREND PIERRE · COLLET PIERRE

through an explicit memory or through the state of system elements such as their location,

speed, etc. Prediction therefore requires more information and is, in turn, more di�cult. Fur-

ther investigation would be required to evaluate the relevance of adapting this metric to more

complex processes, as to identify the suitable solutions according to the value of the metric.

Examples of modelling approaches for engineering complex systems are provided in Sec-

tion 4, for illustrating the three representative modelling levels: Network models such as graph

and network theory, Collaboration models such as complex adaptative systems and system

dynamics, as well as environment model such as stochastic processes.

3.3 Organically Grown Architectures

Although it is currently more geared toward the theoretical evaluation of natural processes,

in particular morphogenesis and embryogenesis, the �eld of Complex System Engineering is

actually already de�ned in the community[11]. The processes proposed by Doursat, if they

perfectly match arti�cial life and organically grown architectures, appear to be actually quite

well suited for designing operational arti�cial systems.

The signi�cant contribution of Complex System Engineering as applied to embryogenesis

in particular is the focus brought on emergent engineering, i.e., the construction of systems

by themselves. This approach provides a radical shift for exploiting controlled self-evolving

systems[21], and introduces very promising perspectives for engineering processes of technical

artefacts, which do not pretend to compete with life processes what regards complexity and

emergence levels.

This radical shift also highlights the strong limitations of current engineering approaches:

• Traditional engineering requires a system to be well de�ned;

• Traditional engineering requires a system's performance to be speci�ed;

• Traditional engineering considers complex systems' emergence as an undesirable `threat';

• Traditional engineering approaches distributed systems design in a top-down centralised

manner.

Emergent engineering, on the contrary, requires to signi�cantly rede�ne usual target prop-

erties of the engineering product and processes (see [21] for details):

• Optimality and performance;

• Utility;

• Performance metrics;

• Evolution v.s. evolvability;

• Robustness.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 7

Ideation, design, production, maintenance are thus likely to undergo major mutations un-

der such a paradigm. For instance, embryomorphic engineering supports the creation of de-

centralized and autonomous systems[22]. Its application to the generation of swarms such as

autonomous robots, or �ying or swimming drones, opens broad perspectives.

Complex system engineering approaches are de�ned as pertaining to four major categories[11],

which have originally been elicited for morphogenetic engineering:

• Category I: Constructing (or Assembling, Fitting): A small number of mobile agents

or components attach to each other or assemble blocks to build a precise `stick-�gure'

structure.

• Category II: Coalescing (or Synchronizing, Swarming): A great number of mobile agents

�ock and make together dense clusters, whose contours adopt certain shapes.

• Category III: Developing (or Growing, Aggregating): The system expands from a sin-

gle initial agent or group by division or aggregation, forming biological-like patterns or

organisms.

• Category IV: Generating (or Rewriting, Inserting): The system expands by successive

transformations of components in the 3D space, based on a grammar of `rewrite' rules.

Figure 3 shows the design-evolution continuum between engineering and biology: Tradi-

tional engineering follows the principle of `intelligent design' (ID), with clearly understood and

explicitly de�ned system architecture and internal models or behaviours. The second step,

`intelligent meta-design' (IMD), consist in generative engineering where constraints and target

properties are explicit, but the system building is delegated to a machine or an autonomous

system. The third step, `evolutionary meta-design' (EMD), let the system be generated and

evolve over generations, while constraints and target properties are still set. The ultimate step,

`undesigned evolution' (UE), consists is letting system evolve over generation while no longer

using explicit constraint and properties, but exploiting feedback from their environment to lead

to an evolutionary `reinforcement learning'.

Figure 3 The design-evolution continuum[11]

The �eld of organically grown architectures thus paves the way towards programmable

complex systems, with applications essentially limited to robotics and organ models so far[23].

Programmable architectures already exist[24]. Their patterns for developmental modularity and

variability[25] build a critical block for their successful implementation.



8 PARREND PIERRE · COLLET PIERRE

From intelligent design to undesigned evolution, organically grown architectures open a

broad �eld of endeavour for the nascent �eld of Complex System engineering, and provides a

framework for evaluating the maturity category of complex system approaches: I) Constructing,

II) coalescing, III) developing and IV) generating.

4 Applications

In the wide landscape of Complex System tools which can be applied to engineering, three

modelling approaches emerge as pragmatic and powerful solutions: Network model (graph and

network theory), collaboration model (complex adaptive systems, system dynamics), environ-

ment model (stochastic processes). We now illustrate these models through various success

stories of Complex System engineering: Risk analysis of utility infrastructure as Complex Net-

works, risk management in evolving complex manufactured systems such as helicopters through

Design Structure Matrices, System Dynamics for understanding accidents, and bio-inspired

stochastic computation. We conclude this section by introducing a recent breakthrough in evo-

lutionary engineering: Complex software engineering, which leverages the properties of arti�cial

evolution for bringing software quality to the next level.

4.1 Utility Infrastructures as Complex Networks

Complex System have been popularized in the engineering domain by the success of network

modelling of utility infrastructures and of their weaknesses. One major contribution in the

domain is the work of Gorman[26], who have modelled the US optical �bre network, as well as

other critical networks such as the gas network. The theoretical foundations for this research

was laid by Barabási under the term `complex networks'[27].

At the example of the US Internet connections, Gorman illustrates that most physical

networks are vulnerable to very localised failures such as a line cut by an excavator, which in

the earlier years of Internet already caused major overload in the nationwide network, or to

domino e�ects and major regional blackouts following the shutdown of a single plant on the

electrical grid. Figure 4 shows an example of such a network: The US optical �bre network[26],

which scale-free properties make it more e�cient, but challenges its robustness. This study also

had a major impact towards the awareness of the policy makers with regard to the quantity of

information which can be extracted through data available openly, since it was only performed

based on non-con�dential data. It can thus be considered as a key moment in the Open Data

movement.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 9

Figure 4 An example of scale-free network: The US optical �ber network[26]

Understanding the topology of networks at di�erent scales thus proves to be of core relevance

for the analysis of the interconnections of technical or geographical graphs: It help to understand

that a dense interconnection does not abolish the distances or ensure per se a great robustness,

but that a new set of metrics is needed to characterize, understand, and maintain the networks.

These metrics are in particular:

Centrality: The importance of the vertices in a graph and its variations:

Degree centrality: The number of links incident upon a node.

Closeness: Average length of the shortest path between the node and all other nodes.

Betweenness: The number of times a node acts as a bridge along the shortest path

between two other nodes.

Clustering coe�cient: The degree to which nodes in a graph tend to cluster together.

Diameter: The maximal distance between any pair of its nodes.

Networks are also characterised by their topologies, which can in particular match following

models:

random

Erdós-Rényi (ER) model: With low clustering coe�cient and degree distribution converg-

ing towards a Poisson distribution[28],

Watts-Strogatz model: With small-world properties such as short average path lengths and

high clustering[29],

Barabási-Albert (BA) model: With scale-free properties such as power-law degree distri-

butions leading to the presence of hub, with unusually high degree of connectivity with

other nodes[30].



10 PARREND PIERRE · COLLET PIERRE

Figure 5 introduces a summary of the di�erence between random and scale-free networks[27].

Figure 6 illustrates the robustness of a network when facing node removal and Figure 7 the

typical topologies of complex networks[31]: Random, small-world and regular.

Figure 5 Random and scale-free networks[27]

Figure 6 Robustness of a network when facing node removal[31]

Figure 7 Topologies of complex networks[31]

Similar approaches have been applied to the study of interdependencies in �nancial networks[32],

as well as subsequent crisis: Knowing the single points of failure, the propagation e�ects, the



A REVIEW ON COMPLEX SYSTEM ENGINEERING 11

probability of occurrence of given events in multi-scale networks is necessary for e�ciently

ensuring their robustness. Complex networks certainly constitute the better known tool of

complex systems outside the Complex System Science community.

4.2 Keeping the Control over Structural Complexity

Another domain where complexity poses a major practical challenge is the manufacturing of

highly technological products, where numerous mechanical and electronic parts interact. In this

context, the product behaviour itself does not necessarily show emergent properties, but its de-

velopment time[33], reliability[34], design[35] as well as its robustness to change propagation[36, 37]

exhibit a high coupling behaviour. The main drivers of complexity in manufacturing are prod-

uct enablers, process enablers, market forces and social and environmental pressure, as shown

in Figure 8. Product enablers are the manufacturing technology, the product structure, the

control system and software, the product complexity and the customer requirements. Process

enablers are the global supply chain, human cognitive ergonomics, planning and scheduling,

manufacturing system responsiveness and design tools and methodologies. Market forces im-

ply complexity through global competition, turbulence, variety, short delivery and zero defect

objectives, among others. Social and environmental pressure mainly comes from standards and

government legislation.

So as to solve these challenges, Design Structure Matrix∗ (DSM)[38, 39] have been proposed,

and have evolved since their inception as a research object of their own. Design Structure Matri-

ces represent the dependencies between individual components of systems, which can be inter-

actions based on spatial adjacency, energy �ow exchange, information �ow exchange or material

exchange[38]. They can treat both structural dependencies[38] and time-based dependencies[33]

and re�ect their propagation through several dependency levels.

Figure 8 The drivers of manufacturing complexity

The process of generation of the DSM of a given system[40] entails three steps: 1) The

creation of the spaghetti graph of the system to be analysed, 2) the extraction of the base

∗http://www.dsmweb.org/.



12 PARREND PIERRE · COLLET PIERRE

DSM out of this spaghetti graph, and 3) the reordering of this DSM. Reordering aims either at

simpli�cation or at identi�cation of signi�cant subsystems. Figure 9 shows the spaghetti graph

for an example system. Figure 10 shows the base DSM for the example. Figure 11 shows the

related partitioned DSM. The reordering of the DSM underlines the presence of three di�erent

types of system component relationships: 1) Parallel � Two components have dependencies

to and from the same third parties components, but not between themselves; 2) Sequential �

One component depends on one another; and 3) coupled � Two components depend on each

other[33].

Figure 9 Step 1 of DSM generation: Spaghetti graph[40]

Figure 10 Step 2 of DSM generation: Base DSM[40]

Figure 11 Step 3 of DSM generation: Partitioned DSM[40]

The four operations which can be applied to DSMs for reordering are the following ones[40]:

Partitioning: Manipulating the DSM rows and columns such that the new DSM arrangement

does not contain any feedback marks, thus, transforming the DSM into a lower triangular

form.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 13

Tearing: The process of choosing the set of feedback marks that if removed from the matrix

(and then the matrix is re-partitioned) will render the matrix lower triangular.

Banding: The addition of alternating light and dark bands to a DSM to show independent

(i.e., parallel or concurrent) activities or system elements.

Clustering: Finding subsets of DSM elements (i.e., clusters or modules) that are mutually

exclusive or minimally interacting[38].

Domain Structure Matrices have been extended to support the heterogeneity of products

and processes: Domain mapping matrices[41] support the mapping between two domains, for

instance tasks and persons, and multiple domain matrices[42] enable the analysis of multiple

domains having multiple elements.

When composite properties build the subject of analysis, Design Structure Matrices can be

combined[34]: For instance, risks analysis is performed through the combination of probability

and impact matrices. Figure 12 shows the GKN Westland Helicopters EH101, which evolution

is taken as a case study for the evaluation of DSMs as a change propagation management tool.

Figure 13 shows an excerpt of the DSMs used for the risk evaluation of this change manage-

ment process: Combined likelihood and combined impact of changes in complex manufactured

products enable the computation of combined risks of the planned changes. Each technical

interdependency inside the system is identi�ed; the probability of propagation of a �aw from

any given component to the next is quanti�ed, as well as the importance of the impact of such

a �aw. Recursivity then enables to measure the indirect risks of �ow propagation from a given

component to a remote one inside the target system.

Figure 12 The GKN westland helicopters EH101[34]

Figure 13 Use of a design structure matrix for change propagation management[34]



14 PARREND PIERRE · COLLET PIERRE

4.3 Understanding Accidents

The analysis of emergent properties of complex arti�cial or natural environments is the

subject of the System Dynamics[43] �eld. In System Dynamics, ecosystems or organisations are

modelled through the positive of negative feedback its elements � Or rather its key indicators

� Exercise over each other. Accident analysis is a �eld which is well understood. The STAMP:

Systems-Theoretic Accident modelling and Processes[44] provides a comprehensive illustration

of the capability of this approach. Its goal is resilience in safety-critical systems[45]. It is

based on three core concepts: Constraints, hierarchical levels of control, and process models.

It emphasizes the distinction between development and operations. STAMP is based on the

risk management framework by Rasmussen[46] which takes hazard source characteristics as well

as the full socio-technical system and environmental stressors into account for the analysis:

Government, regulators and associations, companies, management, sta� and work.

The models of System Dynamic are built by three main types of feedback loops between their

elements: The reinforcing loop, shown in Figure 14, the balancing loop, shown in Figure 15, and

the balancing loop with a delay, shown in Figure 16[47]. The models can be one-scale model,

where individual metrics interact with one another, and multi-scale models, where submodels

interact with one another. Tools like VENSIM† or others support the approach.

Figure 14 System dynamics: Reinforcing loop[47]

Figure 15 System dynamics: Balancing loop[47]

Figure 16 System dynamics: Balancing loop with a delay[47]

Figure 17 shows an excerpt of the model for the multi-scale risk management analysis of

Shuttle Columbia loss, performed at NASA[48]. Considered risk submodels are launch rate,

perceived success by the administration, system safety resource allocation, shuttle ageing and

maintenance, system safety knowledge, skills and sta�ng, incident learning and corrective ac-

†http://vensim.com/.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 15

tion, as well as system safety e�ort and e�cacy. The risk level, which quanti�cation is the

target of this investigation, is a model variable for itself.

Figure 17 The multi-scale risk management analysis of Shuttle Columbia loss[48]

The modelling using System Dynamics for real-world systems is performed in six steps[43].

This integrated approach from analysis to deployment implies a very thorough validation of

�eld tests and data on which the conclusion are drawn[49].

• Description of the system;

• Conversion of the description to level and rate equations;

• Simulation of the model;

• Design of alternative policies and structures;

• Educate and debate;

• Implement changes in policies and structures.

The evolution of the key indicators over time build the output of the model. They provides

signi�cant insights over the behaviour of the system, as well as over potential countermeasures

against observed �aws. For instance, Figure 18 shows perceived priorities w.r.t. performance

and safety at NASA during the preparation process of spatial �ights[47]. Figure 19 depicts the

relative impact of �xing symptoms only v.s. �xing systemic factors.

Figure 18 Perceived priorities: Performance v.s. safety[47]



16 PARREND PIERRE · COLLET PIERRE

Figure 19 Impact of �xing symptoms only v.s. �xing systemic factors[47]

In cases where only indicators are available from the environment under analysis, System

Dynamics provides an e�cient framework for modelling the retroactive loops between the var-

ious system and environment indicators. A thorough evaluation of the model w.r.t. actual

system state enables to evaluate hypotheses and deploy them in the wild. It therefore builds

another very pragmatic approach for Complex System modelling applied to the engineering of

real products or organisations.

4.4 Bio-Inspired Stochastic Computation

In the �eld of Computer Science, complexity is tightly bound with Complexity Theory and

problems causing combinatorial explosion if one searches to �nd solutions through systematic

exploration, like the Traveling Salesman Problem (TSP). These problems typically pertain

to the NP-hard problem category, and although they are not recent, require a radical shift

w.r.t. other algorithm types. The idea of exploiting evolution in the computing domain is almost

as old as the transistor itself � The �rst computing e�orts on evolution date back to 1954[50].

The theory of this new insight came in the mid-70's as a bio-inspired, stochastic computation

approach: Evolutionary algorithms[51]. Actual applications came more than one decade later[52],

and the beginning of the XXI's century brought the �rst signi�cant technological successes of

evolutionary approaches, such as the generation of highly focused satellite antennas for the

NASA[53]. This dissemination goes along the creation of complementary bio-inspired, stochastic

algorithms, such as Ant-Colony Optimisation (ACO) or Particle Swarm Optimisation (PSO).

Evolutionary Algorithms (EAs)

are bio-inspired algorithms which rely on Darwinian theory of evolution[54]. They come in

four main �avours[55]:

Genetic algorithms where the solutions are typically represented as strings or binary, and

evolve through recombination and mutation[51, 56]. These algorithms are typically used

for optimisation problems[57], machine learning[58], or classi�ers[59].

Evolution strategies where the potential solutions are represented by numerical vectors[60�62].

The mutation process is in most cases self-adaptive. They have applications in particular

for parameter optimisation[62, 63].



A REVIEW ON COMPLEX SYSTEM ENGINEERING 17

Genetic programming considers full-�edged computer programs as the artefacts under mu-

tation, rather than individual solutions to formal problems[64]. The �tness of the program

is evaluation w.r.t. a prede�ned task.

Evolutionary programming is similar to Genetic programming, but the program structure

itself is �xed, while only its numerical parameters are allowed to evolve[65, 66]. Often,

Finite State Machines are used as predictors.

The individual solutions can thus be either strings, binary, numeric values, parametrized pro-

grams, or full-�edge programs. Hybrid approaches are frequent. For instance, so-called memetic

algorithms[67] combine a population-based genetic algorithm with speci�c meta-heuristics for lo-

cal searches. This approach is in particular e�cient for multi-objective problem solving. Genetic

algorithms can also be combined with di�erential evolution[68] for improving local search[69].

Multi-objective problems are not resolved through a single individual, which would be �tter

than the others, but through a set of individuals providing a balanced trade-o� between the

objectives[70, 71]. This set of better �tting individuals, called `non-dominated', can be visu-

alised with a so-call Pareto front. Figure 20 depicts the various topologies of Pareto fronts for

multi-objective problems solved using Evolutionary Algorithms. A whole family of dedicated

multi-objectives evolutionary algorithms (MOEAs) addresses the extraction of pareto-optimal

solutions through evolutionary algorithms: NSGA2[72], NSGA3[73], ASREA[74], PAES[75] and

ESPEA[76].

Figure 20 The various topologies of Pareto fronts for multi-objective problems solved using Evo-
lutionary Algorithms[70]

Figure 21 shows the generic process for Evolutionary Algorithms[55, 58], which is are made

up of four main steps:

Initialisation The population of potential solutions is created, mostly in a random way, as

shown in Figure 22.

Evaluation The current population, either the initial population or the evolved population,

is evaluated w.r.t. the �tness function. The �tness function is a numerical value which

enables to rank the quality of each individual. A better �tness is typically represented

through a smaller �tness value. The �tness function of the population is usually bound



18 PARREND PIERRE · COLLET PIERRE

with a stop criteria, together with other algorithmic metrics such as the number of itera-

tions: if a su�ciently e�ective solution is found, or if the search is too long, the algorithm

stops and returns the current population as output.

Selection The individuals which are considered the �tter for serving as basis for the creation

of the next generation are kept in the system. Often, the best individuals are kept, but

sometimes heterogeneous solutions enable to foster exploration of the search space and

reduce the risk of sticking to local optima.

Evolution Three main strategies for evolution exist:

Haploïd reproduction i.e., reproduction from a single cell. It is typically implemented

through the mutation operator shown in Figure 23 and applied to a single parameter

of one given candidate solution.

N-ploïd reproduction i.e., reproduction from several cells. It supports evolution from

several existing candidate solutions, as shown in Figure 24. It is for instance typical

of Particle Swarm Optimisation (PSO)[77].

Sexual reproduction typically from two cells. It relies on two individuals to create a

third one which pertains to the new generation, through the mutation and cross-over

operators, as shown in Figure 25.

The two principal operators for evolution are:

Mutation that consists in altering the value of one single individual. It can be performed

at random, near the current value, as in Particle Swarm Optimisation (PSO)[77] or

Harmony search strategy[78], or consider values of solutions with better evaluation,

as in di�erential evolution[68].

Cross-over that consists in the exchange of one or several parameters (the `chromo-

somes') between a pair of individuals of the potential solution set.

Throughout the evolutionary computation process, the evolution step is performed in two

phases:

Exploration during the �rst iterations, consists in generating candidate solutions over

the whole search space, as shown in Figure 26.

Exploitation during later iterations, consists in generating candidate solutions based on

e�cient existing solutions to perform local search, as shown in Figure 27.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 19

Figure 21 The generic process for Evolutionary Algorithms

Figure 22 Evolutionary algorithms: The initialisation step

Figure 23 Evolutionary algorithms: The haploïd reproduction strategy for the evolution step

Figure 24 Evolutionary algorithms: The N-ploïde reproduction strategy for the evolution step



20 PARREND PIERRE · COLLET PIERRE

Figure 25 Evolutionary algorithms: The sexual reproduction strategy for the evolution step

Figure 26 Evolutionary algorithms: The exploration phase of the evolution step

Figure 27 Evolutionary algorithms: The exploitation phase of the evolution step

Each particular Evolutionary Algorithm uses a combination of this overall process[79]. The

status of the population being evolved can be of two types: In the Pittsburgh-strategy for

Evolutionary Algorithms[80], the population is built of individual candidates, and the problem

solution is built out of a single individual of the population, as shown in Figure 28; in the

Parisian-strategy for Evolutionary Algorithms, the population is built of partial candidates,

and the problem solution is built out of several individuals of the population, as shown in Fig-

ure 29. This distinction is in particular exploited in Learning Classi�er Systems (LCS)[55, 81].

Pittsburgh-LCS[80, 82, 83] de�nes a population of classi�er-sets, the problem solution is built out



A REVIEW ON COMPLEX SYSTEM ENGINEERING 21

of one individual of the population. Michigan-LCS[79, 84, 85] de�ne a population built of indi-

vidual classi�ers, and the problem solution is built out of several individuals of the population.

The Parisian approach[86] consists in the generalisation of the Michigan approach to generic

Evolutionary Algorithms[87]. It has been in particular evaluated for Iterated Function Systems

(IFS), which build systems of functions for generating fractals.

Figure 28 Evolutionary algorithms: Pittsburgh-strategy in the selection step

Figure 29 Evolutionary algorithms: Parisian-strategy for the selection step

The e�ciency of Evolutionary Algorithm depends on the balance between the phases of

exploration, where the overall landscape is discovered, and exploitation, where local search is

performed[88]. This balance can be improved by the island model, where local islands exchange

individuals from time to time to reduce the risk of being trapped in local optima[89, 90]. The

island model provides a theoretical basis for distribution of EAs, either on CPU[91] or on General

Purpose Graphical Programming Units (GPGPU)[92]. Such architectures exhibit interesting

properties such as the capacity to obtain supralinear performance w.r.t. the actual processing

power[93].

4.4.1 Alternative Stochastic Algorithms

In order to exploit bio-inspired stochastic computing in domains where evolutionary algo-

rithms do not outperform, several complementary approaches have been developed. One of

the most famous is Ant-Colony Optimisation (ACO)[94], which are based on work on the Ar-

gentina ant `Iridomyrnex Humilis' by Deneubourg[95, 96]. Whereas EAs intend to solve complex



22 PARREND PIERRE · COLLET PIERRE

problems through a population based approach, ACOs exploit the emergent properties of col-

laborating unitary agents, which interactions enable to identify e�cient paths in dynamic envi-

ronments through the deposit of pheromones: This is stygmergy. Figure 30 shows `Iridomyrnex

Humilis' ants �nding a short path through two bridges between nest and food[97]. Photos are

shot 4 and 8 minutes after the bridge is set, respectively.

Other approaches are Particle Swarm Optimisation (PSO)[77] for local search strategies,

Harmony Search which combines a genetic algorithm with a local search strategy[78], or the Fly

algorithm[98] for identifying moving objects in video processing. The exhaustive presentation of

these algorithms goes far beyond the scope of this contribution. We will therefore not elaborate

further on them. As a conclusion, bio-inspired stochastic algorithms introduce non-deterministic

optimisation for complex problems, and provides mutation and cross-over mechanisms able to

solve complex problems as well as to generate original knowledge. They therefore lay a solid

basis for studying complex problems in the Computer Science �eld.

Figure 30 `Iridomyrnex Humilis' ant �nding a short path through two bridges between nest and
food[97]

4.5 Complex Software Engineering

One of the most recent breakthroughs in the application of Complex System science to

engineering is the Genetic Improvement (GI) of programs[99], originally known as Probabilistic

incremental program evolution (PIPE)[100]. This approach is a major milestone towards the

automation of programming, and thus opens great perspectives for the evolution of the job of

software developers.

Genetic Improvement is de�ned as the process of using computational search techniques to

improve existing software in particular in terms of correctness (bug �xing), execution time, or

power consumption[101]. It consists in the automated evolution of software programs, under the

form of code, abstract code representation, or even binary packages. One of the key �ndings

of GI is that, unintuitively, software is very robust to mutations: In a reference experiment,



A REVIEW ON COMPLEX SYSTEM ENGINEERING 23

Langdon shows that more than 60 % of the mutations of a given test program have actually no

impact on the behaviour of the program whatsoever[102]. Figure 31 illustrates the results of this

experiment on random changes in code lines: 4400 out of 7079 mutations, on the StereoCamera

kernel on an NVidia GeForce FT 730 graphic card, i.e., 62%, have not impact on the execu-

tion. 41 mutations, i.e., 0,58%, of the mutations conserve the program functionalities while

actually improving its performances. Other 38 % of mutations negatively alter functionality or

performance.

Figure 31 The impact of random changes in code lines[102]

One of the operational challenge for such approaches is of course that the test cases, which

serve as reference for the evaluation of the �tness function of the program, must cover all explicit

as well as implicit requirements of the software: Otherwise, new bugs or inconsistencies can

appear unnoticed. A complete coverage is far from being achieved in most software projects

so far, so the application of Genetic Improvement implies a radical shift in the quality of the

software engineering process.

GenProg[103] is one of the reference framework for Genetic Improvement. It proved capable

of solving bugs which are very tedious to correct manually, such as segmentation faults, for

programs of length of several millions lines of code. GenProg represents a program as a pair of:

• An abstract syntax tree (AST) that includes all of the statements in the program;

• A weighted path consisting of a list of program statements, each associated with a weight

based on that statement's occurrence in the execution traces of various test cases.

The update operator of the genetic algorithm alters the path. This alteration is re�ected

back in the program AST. The process iterates until the �tness function con�rms that the test

cases execute without error. The potential drawbacks of this approach are usually more than

compensated by the rapid generation of robust software patches, but need nonetheless to be

taken into account: High costs are bound with repairs that actually degrade the functionality,

in case of insu�cient code coverage by tests, or with the application of repairs following false

positives generated by intrusion detection systems, i.e., which actually do not match an actual

vulnerability or instability in the program.



24 PARREND PIERRE · COLLET PIERRE

The issue of code coverage poses a major challenge for the wide dissemination of GI. There-

fore, some authors propose an iterative process including regular interactions with the user, so

as to complete the test case set: Figure 32 shows a three-stage evolutionary approach for evo-

lutionary software repair by Schulte[104], applied to �rmware and drivers. The exploitation of

the expert feedback also enables a radical shift in the type of programs which can be corrected:

rather than considering the program code only, or an abstract representation of the code as

AST, it becomes possible to repair program binaries, with little to no preliminary knowledge

about the program. First, the vulnerable executable binary is extracted from the �rmware.

Next, the program is mutated in order to �nd versions of the executable which solves the bugs

or vulnerabilities. Then, the user interactively adds test cases that covers the functionalities

broken by the current mutation. The process iterates until an actual program repair is found.

Figure 32 An approach for evolutionary software repair[102]

Fine-tuning the Genetic Improvement process requires to de�ne speci�c metrics for the

underlying genetic algorithms[101]: The �tness functions is speci�c to the objective of the GI

process, and needs to take into account the evaluation of the functional stability of the program.

For bug �xing it is inherently discrete, whereas it becomes continuous when the objective is

to improve execution time or to reduce memory consumption. The edit distance measures

the number of mutations between two valid programs, and thus evaluates the depth of the

performed alterations.

Genetic Improvement paves the way to program synthesis: For instance, evolutionary soft-

ware sketching[105] enables to quicken the generation of full programs by the machine: In-

stead of generating a comprehensive program, a �rst sketch is created by the developers, and

serves as basis for the synthesis of missing parts. This approach provides competitive perfor-

mances w.r.t. full synthesis. The proposed approach lays on Satis�ability Modulo Theories

(SMT)[106, 107], a form of the constraint satisfaction problem.

5 Conclusions and Perspectives

Complex System approaches, in particular Evolutionary Algorithms, provide a very promis-

ing way to explore the search space of highly complex artefacts like software programs. They are

likely to take even more signi�cance as the �elds of Genetics Improvement, meant for program

optimisation and repair, and Program Synthesis, which aims at generating full applications,

will gain in maturity. These evolutions will highly probably bring major disruption in the IT

and development industry, and job market, in the coming decades.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 25

Acknowledgements

We thank the CSTB team at ICube laboratory, René Doursat from the Manchester Uni-

versity for valuable exchanges on the subject of morphogenetic engineering and Claudia Eckert

from the Open University in London for her pedagogical work on Design Structure Matrices.

References

[1] Holland J, Complexity: A Very Short Introduction, ser. Very Short Introductions, OUP Oxford,
2014.

[2] Morin E, Introduction à la pensée complexe, Le Seuil, 2015.
[3] Bourgine P and Lesne A, Morphogenesis: origins of patterns and shapes. Springer Science &

Business Media, Springer-Verlag Berlin Heidelberg, 2010.
[4] Zanella C, Campana M, Rizzi B, et al., Cells segmentation from 3-d confocal images of early

zebra�sh embryogenesis, IEEE Transactions on Image Processing, 2010, 19(3): 770�781.
[5] Bogunia-Kubik K and Sugisaka M, From molecular biology to nanotechnology and nanomedicine,

Biosystems, 2002, 65(2): 123�138.
[6] Simon H A, The sciences of the arti�cial. MIT press, Cambridge (MA), USA, 1996.
[7] Modha D S, Ananthanarayanan R, Esser S K, et al., Cognitive computing, Communications of

the ACM, 2011, 54(8): 62�71.
[8] Wang Y, Wang Y, Patel S, et al., A layered reference model of the brain (lrmb), IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2006, 36(2):
124�133, 2006.

[9] Carlson J M and Doyle J, Complexity and robustness, Proceedings of the National Academy of

Sciences, 2002, 99(suppl 1): 2538�2545.
[10] van Eijnatten F, Putnik G, and Sluga A, Chaordic systems thinking for novelty in contemporary

manufacturing, CIRP Annals-Manufacturing Technology, 2007, 56(1): 447�450.
[11] Doursat R, Sayama H, and Michel O, A review of morphogenetic engineering, Natural Computing,

2013, 12(4): 517�535.
[12] Turing A M, Computing machinery and intelligence, Mind, 1950, 59(236): 433�460.
[13] De Garis H, Shuo C, Goertzel B, et al., A world survey of arti�cial brain projects, part I: Large-

scale brain simulations, Neurocomputing, 2010, 74(1): 3�29.
[14] Goertzel B, Lian R, Arel I, et al., A world survey of arti�cial brain projects, part II: Biologically

inspired cognitive architectures, Neurocomputing, 2010, 74(1): 30�49.
[15] Markram H, The blue brain project, Nature Reviews Neuroscience, 2006, 7(2): 153�160.
[16] De Garis H, Korkin M, Gers F, et al., Building an arti�cial brain using an fpga based cam-brain

machine, Applied Mathematics and Computation, 2000, 111(2): 163�192.
[17] Fisk D, Engineering complexity, Interdisciplinary Science Reviews, 2004, 29(2): 151�161.
[18] Fisk D and Kerherve J, Complexity as a cause of unsustainability, Ecological Complexity, 2006,

3(4): 336�343.
[19] ElMaraghy W, ElMaraghy H, Tomiyama T, et al., Complexity in engineering design and manu-

facturing, CIRP Annals-Manufacturing Technology, 2012, 61(2): 793�814.



26 PARREND PIERRE · COLLET PIERRE

[20] Carlson J M and Doyle J, Highly optimized tolerance: Robustness and design in complex systems,
Physical review letters, 2000, 84(11):2529�2532.

[21] Ulieru M and Doursat R, Emergent engineering: A radical paradigm shift, International Journal
of Autonomous and Adaptive Communications Systems, 2010, 4(1): 39�60.

[22] Doursat R, Organically grown architectures: Creating decentralized, autonomous systems by
embryomorphic engineering, Organic Computing, Springer, 2009, 167�199.

[23] Doursat R, Sayama H, and Michel O, Morphogenetic Engineering: Toward Programmable Com-

plex Systems, Springer, New York, 2012.
[24] Doursat R, Programmable architectures that are complex and self-organized-from morphogenesis

to engineering, ALIFE, 2008, 181�188.
[25] Doursat R, Facilitating evolutionary innovation by developmental modularity and variability, in

Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009, ACM,
683�690.

[26] Gorman S P, Networks, Security and Complexity: The Role of Public Policy in Critical Infras-

tructure Protection, Edward Elgar Publishing, 2005.
[27] Barabási A-L, The physics of the web, Physics World, 2001, 14(7):33�38.
[28] Erdos P and Rényi A, Publicationes mathematicae 6, On Random Graphs, 1959, 1: 290�297.
[29] Watts D J and Strogatz S H, Collective dynamics of'small-world'networks, nature, 1998,

393(6684):440�442.
[30] Albert R and Barabási A-L, Statistical mechanics of complex networks, Reviews of modern

physics, 2002, 74(1):47�100.
[31] Barabási A-L, Linked: The new science of networks, Basic Books, New York, USA, 2003.
[32] Roukny T, Bersini H, Pirotte H, Caldarelli G, and Battiston S, Default cascades in complex

networks: Topology and systemic risk, Scienti�c reports, 2013, 3(2759):1�8.
[33] Carrascosa M, Eppinger S D, and Whitney D E, Using the design structure matrix to estimate

product development time, Proceedings of the ASME Design Engineering Technical Conferences

(Design Automation Conference), 1998, 1�10.
[34] Eckert C M, Keller R, Earl C, et al., Supporting change processes in design: Complexity, predic-

tion and reliability, Reliability Engineering & System Safety, 2006, 91(12): 1521�1534.
[35] Maurer M S, Structural awareness in complex product design, PhD Thesis, Universität München,

October, 2007.
[36] Clarkson P J, Simons C, and Eckert C, Predicting change propagation in complex design, Journal

of Mechanical Design (Transactions of the ASME), 2004, 126(5): 788�797.
[37] Gi�n M, de Weck O, Bounova G, et al., Change propagation analysis in complex technical

systems, Journal of Mechanical Design, 2009, 131(8): 081001.
[38] Pimmler T U and Eppinger S D, Integration analysis of product decompositions, ASME De-

sign Theory and Methodology Conference, Alfred P. Sloan School of Management, Massachusetts
Institute of Technology, 1994.

[39] Browning T R, Applying the design structure matrix to system decomposition and integration
problems: A review and new directions, IEEE Transactions on Engineering Management, 2001,
48(3): 292�306.

[40] Yassine A, An introduction to modeling and analyzing complex product development processes
using the design structure matrix (dsm) method, Urbana, 2004, 51(9): 1�17.

[41] Danilovic M and Sandkull B, The use of dependence structure matrix and domain mapping



A REVIEW ON COMPLEX SYSTEM ENGINEERING 27

matrix in managing uncertainty in multiple project situations, International Journal of Project
Management, 2005, 23(3): 193�203.

[42] Maurer M and Lindemann U, Structural awareness in complex product design�the multiple-
domain matrix, DSM 2007: Proceedings of the 9th International DSM Conference, Munich, Ger-

many, 2007, 87�97.
[43] Forrester J W, System dynamics, systems thinking, and soft or, System Dynamics Review, 1994,

10(2�3): 245�256.
[44] Leveson N, A new accident model for engineering safer systems, Safety Science, 2004, 42(4):

237�270.
[45] Leveson N, Daouk M, Dulac N, et al., A systems theoretic approach to safety engineering, Dept.

of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, 2003.
[46] Rasmussen J, Risk management in a dynamic society: A modelling problem, Safety Science,

1997, 27(2): 183�213.
[47] Leveson N, Dulac N, and Zipkin D, N. Dulac Engineering resilience into safety-critical systems,

Resilience Engineering � Concepts and Precepts, Ashgate Aldershot, 2006, 95�123.
[48] Dulac N, A framework for dynamic safety and risk management modeling in complex engineering

systems, PhD Thesis, Citeseer, June 2007.
[49] Barlas Y, Formal aspects of model validity and validation in system dynamics, System Dynamics

Review, 1996, 12(3): 183�210.
[50] Barricelli N A, et al., Esempi numerici di processi di evoluzione,Methodos, 1954, 6(21�22): 45�68.
[51] Holland J H, Genetic algorithms and the optimal allocation of trials, SIAM Journal on Comput-

ing, 1973, 2(2): 88�105.
[52] De Jong K A, Are genetic algorithms function optimizers?, PPSN, 1992, 2(1): 3�14.
[53] Lohn J D, Linden D S, Hornby G S, et al., Evolutionary design of an x-band antenna for nasa's

space technology 5 mission, in Antennas and Propagation Society International Symposium,

IEEE, 2004, 3: 2313�2316.
[54] Darwin C, The Origin of Species by Means of Natural Election, Or the Preservation of Favored

Races in the Struggle for Life, AL Burt., 1859.
[55] Back T, Hammel U, and Schwefel H P, Evolutionary computation: Comments on the history and

current state, IEEE Transactions on Evolutionary Computation, 1997, 1(1): 3�17.
[56] Holland J H, Genetic algorithms, Scienti�c American, 1992, 267(1): 66�72.
[57] Deb K, Agrawal S, Pratap A, et al., A fast elitist non-dominated sorting genetic algorithm for

multi-objective optimization: Nsga-ii, International Conference on Parallel Problem Solving From

Nature, 2000, 849�858.
[58] Goldberg D E and Holland J H, Genetic algorithms and machine learning, Machine Learning,

1988, 3(2): 95�99.
[59] Booker L B, Goldberg D E, and Holland J H, Classi�er systems and genetic algorithms, Arti�cial

Intelligence, 1989, 40(1�3): 235�282.
[60] Eigen M, Ingo rechenberg evolutionsstrategie optimierung technischer systeme nach prinzipien

der biologishen evolution, mit einem Nachwort von Manfred Eigen, Friedrich Frommann Verlag,

Struttgart-Bad Cannstatt, 1973, 45: 46�47.
[61] Schwefel H P, Numerische Optimierung von Computer-Modellen Mittels der Evolutionsstrategie,

Birkhäuser, Basel Switzerland, 1977, 1.
[62] Schwefel H-P, Evolution strategies: A family of non-linear optimization techniques based on



28 PARREND PIERRE · COLLET PIERRE

imitating some principles of organic evolution, Annals of Operations Research, 1984, 1(2): 165�
167.

[63] Bäck T and Schwefel H P, An overview of evolutionary algorithms for parameter optimization,
Evolutionary Computation, 1993, 1(1): 1�23.

[64] Koza J R, Genetic programming: on the programming of computers by means of natural selection.
MIT press, Cambrridge (MA), USA, 1992.

[65] Fogel L J, Owens A J, and Walsh M J, Arti�cial intelligence through simulated evolution. John
Wiley, Hoboken (NJ), USA, 1966.

[66] Fogel L J, Evolutionary programming in perspective: The top-down view, Computational Intel-
ligence: Imitating Life, 1994, 1.

[67] Moscato P et al., On evolution, search, optimization, genetic algorithms and martial arts: To-
wards memetic algorithms, Caltech concurrent computation program, C3P Report, 1989, 826:1�
67.

[68] Storn R and Price K, Di�erential evolution � A simple and e�cient heuristic for global opti-
mization over continuous spaces, Journal of Global Optimization, 1997, 11(4): 341�359.

[69] Zaharie D and Micota F, Revisiting the analysis of population variance in di�erential evolution
algorithms, IEEE Congress Eonvolutionary Computation (CEC), 2017, 1811�1818.

[70] Fonseca C M and Fleming P J, An overview of evolutionary algorithms in multiobjective opti-
mization, Evolutionary Computation, 1995, 3(1): 1�16.

[71] Zitzler E and Thiele L, Multiobjective evolutionary algorithms: A comparative case study and
the strength pareto approach, IEEE Transactions on Evolutionary Computation, 1999, 3(4):
257�271.

[72] Deb K, Pratap A, Agarwal S, et al., A fast and elitist multiobjective genetic algorithm: Nsga-ii,
IEEE transactions on Evolutionary Computation, 2002, 6(2): 182�197.

[73] Deb K and Jain H, An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: Solving problems with box constraints, IEEE
Trans. Evolutionary Computation, 2014, 18(4): 577�601.

[74] Sharma D and Collet P, An archived-based stochastic ranking evolutionary algorithm (asrea)
for multi-objective optimization, Proceedings of the 12th Annual Conference on Genetic and

Evolutionary Computation, 2010, 479�486.
[75] Knowles J D and Corne D W, Approximating the nondominated front using the pareto archived

evolution strategy, Evolutionary Computation, 2000, 8(2): 149�172.
[76] Collet P and Schoenauer M, Guide: Unifying evolutionary engines through a graphical user

interface, International Conference on Arti�cial Evolution (Evolution Arti�cielle), Springer, 2003,
203�215.

[77] Eberhart R and Kennedy J, A new optimizer using particle swarm theory, IEEE Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, 1995, 39�43.
[78] Geem Z W, Kim J H, and Loganathan G, A new heuristic optimization algorithm: Harmony

search, Simulation, 2001, 76(2): 60�68.
[79] Holland J H, Adaptation in natural and arti�cial systems: An introductory analysis with appli-

cation to biology, control, and arti�cial intelligence, University of Michigan Press, Ann Arbor,
Michigan, 1975, 1�206.

[80] Dejong K, An analysis of the behaviour of a class of genetic adaptive systems, PhD Thesis, Dept.
of Computer and Communication Sciences, University of Michigan, Ann Arbor, 1975.



A REVIEW ON COMPLEX SYSTEM ENGINEERING 29

[81] Bull L, Learning classi�er systems: A brief introduction, Applications of Learning Classi�er

Systems. Studies in Fuzziness and Soft Computing, Springer, Berlin, Heidelberg, 2004, 150:1�
12.

[82] Smith S F, Flexible learning of problem solving heuristics through adaptive search, IJCAI, 1983,
83: 422�425.

[83] Bacardit J and Garrell J M, Evolving multiple discretizations with adaptive intervals for a pitts-
burgh rule-based learning classi�er system, Genetic and Evolutionary Computation Conference,
2003, 1818�1831.

[84] Goldberg D E, Computer-aided gas pipeline operation using genetic algorithms and rule learning,
PhD Thesis, University of Michigan, January, 1983.

[85] Holland J H, Escaping brittleness: The possibilities of general-purpose learning algorithms applied
to parallel rule-based systems, Machine Learning, an Arti�cial Intelligence Approach, Morgan
Kaufmann, Los Altos (CA), USA, 1986, 2:593�623.

[86] Collet P, Lutton E, Raynal F, et al., Polar ifs+ parisian genetic programming= e�cient ifs inverse
problem solving, Genetic Programming and Evolvable Machines, 2000, 1(4): 339�361.

[87] Hutchinson J E, Fractals and self similarity, Indiana University Mathematics Journal, 1981,
30(5): 713�747.

[88] �repin²ek M, Liu S-H, and Mernik M, Exploration and exploitation in evolutionary algorithms:
a survey, ACM Computing Surveys (CSUR), 2013, 45(3):1�33.

[89] Martin W, Lienig J, and Cohoon J P, C6. 3 island (migration) models: evolutionary algorithms
based on punctuated equilibria, B ack et al. BFM97], Seiten C, 1997, 6:101�124.

[90] Melab N, Talbi E G, et al., Gpu-based island model for evolutionary algorithms, Proceedings of
the 12th annual conference on Genetic and Evolutionary Computation, ACM, 2010, 1089�1096.

[91] Arenas M G, Collet P, Eiben A E, et al., A framework for distributed evolutionary algorithms,
International Conference on Parallel Problem Solving from Nature, 2002, 665�675.

[92] Maitre O, Baumes L A, Lachiche N, et al., Coarse grain parallelization of evolutionary algo-
rithms on gpgpu cards with easea, Proceedings of the 11th Annual Conference on Genetic and

Evolutionary Computation, 2009, 1403�1410.
[93] Krüger F, Baumes L, and Collet P, Exploiting clusters of gpu machines with the easea platform,

Arti�cial Evolution 2011 (Evolution Arti�cielle 2011), 2011.
[94] Dorigo M, Maniezzo V, and Colorni A, Ant system: Optimization by a colony of cooperating

agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):
29�41.

[95] Deneubourg J L and Goss S, Collective patterns and decision-making, Ethology Ecology & Evo-

lution, 1989, 1(4): 295�311.
[96] Deneubourg J L, Aron S, Goss S, et al., The self-organizing exploratory pattern of the argentine

ant, Journal of Insect Behavior, 1990, 3(2): 159�168, 1990.
[97] Goss S, Aron S, Deneubourg J L, et al., Self-organized shortcuts in the argentine ant, Naturwis-

senschaften, 1989, 76(12): 579�581.
[98] Louchet J, Guyon M, Lesot M J, et al., Dynamic �ies: A new pattern recognition tool applied to

stereo sequence processing, Pattern Recognition Letters, 2002, 23(1): 335�345.
[99] Langdon W B, Genetic improvement of programs, 2014 16th IEEE International Symposium on

Symbolic and Numeric Algorithms for Scienti�c Computing (SYNASC), 2014, 14�19.
[100] Salustowicz R and Schmidhuber J, Probabilistic incremental program evolution, Evolutionary



30 PARREND PIERRE · COLLET PIERRE

Computation, 1997, 5(2): 123�141.
[101] Haraldsson S O, Woodward J R, Brownlee A E, et al., Exploring �tness and edit distance of

mutated python programs, European Conference on Genetic Programming, 2017, 19�34.
[102] Langdon W B and Petke J, Software is not fragile, First Complex Systems Digital Campus World

E-Conference 2015, 2017, 203�211.
[103] Le Goues C, Nguyen T, Forrest S, et al., Genprog: A generic method for automatic software

repair, IEEE Transactions on Software Engineering, 2012, 38(1): 54�72.
[104] Schulte E M, Weimer W, and Forrest S, Repairing cots router �rmware without access to source

code or test suites: A case study in evolutionary software repair, Proceedings of the Companion

Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM,
2015, 847�854.

[105] Bª¡dek I and Krawiec K, Evolutionary program sketching, European Conference on Genetic

Programming, Springer, New York, 2017, 3�18.
[106] Ranise S and Tinelli C, Satis�ability modulo theories, Trends and Controversies-IEEE Intelligent

Systems Magazine, 2006, 21(6): 71�81.
[107] Barrett C W, Sebastiani R, Seshia S A, et al., Satis�ability modulo theories, Handbook of Satis-

�ability, 2009, 185: 825�885.


	Introduction
	Research Challenges
	Engineering and Complex Systems
	Engineering and the `Science of the Artificial'

	The Models of Complex System Engineering
	Architecture Design and Complex System Engineering: The Brain Model Example
	Modelling Complexity
	Organically Grown Architectures

	Applications
	Utility Infrastructures as Complex Networks
	Keeping the Control over Structural Complexity
	Understanding Accidents
	Bio-Inspired Stochastic Computation
	Alternative Stochastic Algorithms

	Complex Software Engineering

	Conclusions and Perspectives

