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Abstract—In biology and pathology immunofluorescence mi-
croscopy approaches are leading techniques for deciphering of the
molecular mechanisms of cell activation and disease progression.
Although several commercial softwares for image analysis are
presently in the market, available solutions do not allow a totally
non subjective image analysis. There is therefore strong need for
new methods that could allow a completely non-subjective image
analysis procedure including for thresholding and for choice
of the objects of interest. To address this need, we describe
a fully automatic segmentation of cell nuclei in 3-D confocal
immunofluorescence images. The method merges segments of the
image to fit with a nuclei model learned by a trained random
forest classifier. The merging procedure explores efficiently the
fusion configurations space of an over-segmented image by using
minimum spanning trees of its region adjacency graph.

I. INTRODUCTION

Functional imaging with multiplexed immunofluorescence
together with whole-slide confocal microscopy enables biol-
ogists and pathologists to detect the expression of various
proteins of interest in entire tissue samples, together with the
ability to explore their spatial configurations and relationships
in 3-D.

These technologies appear to be especially useful in cancer
research for the study of the interactions between tumor
cells and cells of the immune system, such as Cytotoxic T
Cells (CTL). They have the potential to help to discover new
tumor signatures and to precise the classification of patients
in order to predict and enhance their responses to treatment
and to provide a personal medication adapted to each well-
defined kind of tumor. However, if tumor characterization
at the cellular and molecular levels can lead to functional
validation of targets for therapy and preclinical evaluation of
treatment response, the major drawbacks are that whole-slide
3-D microscopy imaging techniques generate large sets of data
to be analyzed. This leads to an increasing number of objects
to extract from the images, that tend to be more and more
complex [1], [2], [3].

Tools for interactive segmentation have already been de-
veloped in order to help biologists to quantify objects and
events in both 3-D and 2-D images [4], [5], [6]. But interactive
segmentation remains a time-consuming and tedious task, that
is not well suited for image stacks containing hundreds or
thousands of cells. Interactive tools are also likely to increase
inter/intra-observer variability and induce subjectivity in the
segmentation process.

Obviously, when a larger number of cells is to be analyzed in a
study, fully automated methods are faster and less subjective.
On the other hand, human brain integrates so much context
information, prior knowledge and deductions based on image
data that automatic segmentation tends to be much lower than
visual analysis by an expert and automatic segmentation of
digital pathology images remains a difficult challenge [7].

Particularly in fluorescent biological images, one recurrent and
well studied task is the segmentation of cell nuclei which can
be considered as the first step to complete multiplex image
analysis. Commonly, one channel of the image is given by the
fluorescence of dihydrochloride (DAPI), which labels DNA
and reveals nuclei. Due to heterogeneities in DNA density,
DAPI channel presents a signal with high intra/inter-nuclei
intensity variability. Additionally, nuclei are usually in the form
of dense clusters that have to be separated (see Fig. 4).

Fully automated methods for 3-D-nuclei segmentation have
been extensively explored in the literature [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. Some of these
approaches rely on implicit methods [15], [16] that are very
sensitive to initialization and require high computation cost.
However, they stand as excellent refinement methods since
they define a smooth constrained model of the surface of a
nucleus.

Other algorithms propose to separate clustered nuclei by
finding and matching concavity points around the contours
of clusters [17], [18], [19]. Though, contours of clusters are
usually noisy and complex decision rules have to be created
to eliminate outliers and find best matching points. Moreover,
curvature is only computed on 2-D images and transcriptions
of these methods to 3-D spaces imply to use an arbitrary slice
of confocal images.

Most approaches are based on the marker-controlled watershed
segmentation framework [8], [9], [10], [11], [12], [13], [14],
where potential centers of nuclei are used as sources for the
watershed procedure. The method is known to produce over-
segmented images because of imperfect markers i.e. nuclei
centers detection. To overcome the issue, models of nuclei
are designed [9], [10], [11], [12] and a procedure of merging,
ruled by models fitting, is used to find best fusion configura-
tions. Exploring fusion configurations is a hard combinatorial
problem and design of nuclei models as well as decision rules
are treated as a heuristic.
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Our work is closely related to the latter category of
algorithms. Nevertheless, we propose to reduce the exploration
of fusion configurations with an original algorithm based on
minimum spanning trees structures [20] and base our fusion
decision rule on the predictions of a random forest classifier
[21].

II. METHODS

We propose a method for three-dimensional cell nuclei
segmentation. We address the segmentation task as a region
merging problem. After over-segmenting the volume with a
classical watershed-based procedure, regions are used as nodes
of a graph from which a minimum spanning tree is extracted.
Then, the segmentation is performed by splitting iteratively
the structure into sub-graphs that are most likely to be nuclei,
where probability of being a nuclei is the prediction of a trained
random forest classifier.

A. Initial segmentation

Initializing segmentation procedures with the result of a
seeded watershed is a relatively common practice in 3-D cell
nuclei segmentation [8], [9], [10], [11], [12], [13], [14]. The
objective of this first step is to obtain labeled regions from
the input grayscale image f . A binary mask is first generated
from the input image by the use of Otsu’s threshold value [22].
The Euclidian distance map is then computed from the mask
and gives a grayscale image that is used as propagation map
for the watershed. Seeds locations for the watershed, defined
as potential centers of nuclei, are then computed as the local
maxima of the distance map.
Though, based on nuclei’s radius prior knowledge and a
physical interpretation of the distance map, we can reduce the
number of seeds. Let rmin be the radius of the smallest nuclei
we aim to detect. Considering values in the distance map as
physical distances, only peaks higher than rmin will be used
as seeds.
Moreover, as we want to prevent different nuclei from being
clustered into the same labeled region after segmentation,
minimal distance between two detected seeds must be set to a
value that does not exceed 2× rmin.

B. Modeling and classification

1) Modeling: Model-based approaches are increasingly
popular in the field of automatic histopathological analysis
and have been successfully implemented to perform several
tasks of detection and segmentation of cell nuclei both in 2-D
and 3-D images [23], [24], [13]. They rely on a mathematical
definition of a nucleus that gathers prior knowledge about
shape and intensity in order to make segmentation procedures
less sensitive to noisy and corrupted data. Let Ri be a labeled
region of f . The modeling part of the workflow takes Ri and
its corresponding values in f as an input and returns a feature
vector xi that is a descriptor of the region. Intensity and 3-D
shape description of a nucleus remains a difficult task and, as
in many related works [10], [11], we decided to use a vector
of hand designed features described below:

• Volume is a simple count of all pixels in Ri;

• Conv is a measure of convexity, computed as the ratio
between the volume of the convex hull and the actual
volume of Ri;

• Dx, Dy and Dz are the dimensions of the bounding
box of Ri;

• Comp is a measure of compacity, computed as the
ratio between the volume of the bounding box and
the actual volume of the Ri;

• Front is the fraction of points of the contour of Ri
that actually separate Ri from other labeled regions of
the image (background of the image is not a labeled
region).

• Var is the variance of grayscale intensity in Ri.

2) Classification: Feature vectors can then be used to
classify regions provided by the segmentation in two classes,
nuclei and non-nuclei, or even define more subclasses for het-
erogeneous nuclei populations analysis [14]. Classical work-
flows propose to perform dimensionality reduction and linear
discriminant analysis [25] to transform data into a new lower-
dimensional space where separability between defined classes
is as large as possible. Then, decision rules can be set by
achieving cluster analysis on training data set.

However, considering our feature vector, no assumption can
be made about data separability. In addition, labeling semi-
automatically nuclei data is a time-consuming and onerous
process that usually leads to small data sets with potentially
high number of mislabeled data. Hence we choose the random
forest classifier, since it is non-linear, has a low computation
cost and relies on average decision of multiple independent
predictors which decrease the risk of overfitting and make the
classifier more resilient to outliers [21]. The number of trees
n used for prediction is a parameter of the classifier that is set
by the user. Large numbers provide better results and increase
precision and reliability of class membership probabilities. Let
Pi,c be the probability of Ri to be a member of class C and
denote by nc the trees that actually predict Ri to be in class
C. Pi,c is calculated as the proportion of nc among all trees
in the forest.

To train the classifier, a relatively large number of hand-labeled
shapes has to be produced. We extracted shapes from several
confocal images by using part of the workflow described in
next sections. Detail of the manual labeling procedure is given
in section III-B.

C. Optimal cut of minimum spanning trees

To handle fusion combinations, we first turn regions from
initial segmentation into a region adjacency graph (RAG)
data structure [26] in which each region is a node and any
touching pair of regions is an edge. RAG has then to be
divided into subgraphs that best fit with our nuclei models.
Unfortunately, maximizing nuclei model fitting over the RAG
is not a suitable optimization problem for the Graph Cut
framework [27]. Several algorithms have been proposed to
address the problem with an original bottom-up hierarchical
approach [10], [11], [14]. Briefly, they first assign to each node
n of the RAG its optimal fusion configuration. Let SG be the
whole set of possible fusion configurations containing node n

10th International Symposium on Image and Signal Processing and Analysis (ISPA 2017) September 18-20, 2017, Ljubljana, Slovenia

196
Poster Sessions

Poster Session II



and s be an element of SG. Optimal element s∗(n) of SG and
its corresponding class affiliation c∗(n) is defined as below.

(s∗(n), c∗(n)) = argmax(s,c)(Ps,c) (1)

Then, for each node n, s∗(n) is kept i.e. fusion is actually
done if condition below is satisfied.

∀m ∈ s∗(n), (2)
Ps∗(n),c∗(n) ≥ Ps∗(m),c∗(m) (3)

We propose a slightly different top-down approach that
does not explore all fusion configurations for each node and
can potentially bring an improvement in computation cost.
Our main idea is to turn RAG into a weighted graph and
use the weights to compute a minimum spanning tree (MST)
with Kruskal’s algorithm [20]. The MST is a set of edges that
connects all RAG regions together without creating any cycle.
Kruskal’s algorithm generates a spanning tree that minimize
the total edge weight in the graph. Many choices are possible
for the weighting function and each of them can lead to
slightly different MST. Efficiency of our approach relies on
two desirable properties of the MST (see Fig. 1): first, any
node that is a fragment of a nucleus must be linked to, at
least, one fragment of that same nucleus. Second, a node that
is a fragment of a nucleus cannot be linked to more than one
fragment from any other nucleus. Considering these properties
and our application, the distance between centroids of nodes
gave the best rate of receivable MST.

MST is an acyclic graph, which makes it a very convenient data
structure to explore fusions of regions. By removing an edge of
an MST, the tree is automatically splitted in two disconnected
sub-trees. Let ST be the set that contains the MST itself as
well as the sub-trees obtainable by removing exactly one edge
in the MST. Then, given the MST and a classifier, optimal cut
is the procedure that returns the sub-tree t∗ defined by:

t∗ = argmax(t∈ST )(Pt,nuclei) (4)

A simplified version of the optimal cut procedure is given
in Fig. 3. The ability of the procedure to return the MST
itself covers the case of isolated nuclei that does not have
to be splitted: the MST itself is t∗. The procedure also returns
the residual tree obtained by removing nodes and edges of
t∗ from the MST. Complete segmentation of the MST is
performed by applying the optimal cut procedure on successive
residual trees. For the purpose of segmentation, classifier only
has to predict whether an object is a nucleus or not, but another
procedure using the same random forest classifier can then be
used for nuclei classification.

III. EXPERIMENTS

A. Image acquisition

Images of cytospins containing a mix of CTLs and
melanoma cells were acquired with a Panoramic Confocal
whole-slide digital microscope (3DHISTECH, Hungary) which

Fig. 1. Left: MST is admissible since removing edge (2, 3) results in a
correct separation of clustered nuclei. Right: MST is non-admissible since
edge removal cannot lead to a correct separation.

Fig. 2. Left: example of MST. Right: the first optimal cut of the MST.

1: procedure OPTIMAL CUT(MST, image, classifier)
2: t∗ ←MST
3: residual← None
4: p∗ ← PMST,nucleus(image, classifier)
5: ST ← getST (MST )
6: for t in ST do
7: if PMST,nucleus(image, classifier) > p∗ then
8: p∗ ← Pt,nucleus(image, classifier)
9: t∗ ← t

10: residual←MST \ {t}
11: end if
12: end for
13: return t∗, residual
14: end procedure

Fig. 3. Optimal cut procedure

relies on spinning grid and structured illumination technolo-
gies. This scanner is equipped with a PCO.edge 5.5 peltier-
cooled sCMOS sensor, with a 40X NA 1.20 C-Apochromat
water immersion objective, and uses a Lumencor Spectra X
light engine with 6 independent illumination channels ranging
from 374 to 762 nm.
The images are composed of 5 independent channels using
optical filters whose bandwidths correspond to the peaks of
excitation and emission spectra of 5 different dyes labelling
specific biologically relevant objects. Our developments are
done on a specific spectral channel coming from digital images
acquired in 3-D (31 sections 400 nm spaced each : total
volume = 12,4µm) using an optical filter whose bandwidths
correspond to the peaks of excitation and emission spectra of
DAPI which labels nuclei. Discretization parameters are given
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Fig. 4. Extract of a section of a panoramic confocal whole-slide image (size:
1920 x 1018 pixels, resolution: 162 nm per pixel).

TABLE I. IMAGE GEOMETRY PARAMETERS

Optical section 1.43µm

Z-spacing 0.4µm

X-resolution 0.1625µm

Y-resolution 0.1625µm

TABLE II. DATA SETS POPULATIONS

Data sets Nuclei Unacceptable
Total 379 808

Training 141 359

Testing 238 449

in Table I. Initially, image channel dimensions in pixels are
19200×20736×31. For convenience, entire volume is divided
in several smaller (500 × 500 × 31) volumes that are finally
upsampled to 500×500×120 matrices in order to get isotropic
voxels (see TABLE I).

B. Training and testing

We used a sample of 30 of the previously defined sub-
volumes as a data set. From that data set, 369 MST were
automatically extracted to be manually segmented and labeled
by the use of a Graphical User Interface (GUI). The interface
superimpose a representation of the tree on a 2-D projection
of the image. The user has to select a configuration of adjacent
nodes and assign a class to its selection (see Fig. 5). We choose
to limit the experiment to a simple classification problem
with 2 classes, keeping classification of heterogeneous nuclei
population for a future work: shapes are labeled ”nuclei” or
”unacceptable”. Populations of manually extracted shapes are
summarized in Table II. To validate the classification model,
we used the misclassification rate of a thousand of random
forest classifiers on our testing data set. Classifiers all have
200 estimators, are randomly initialized and trained on the
500 shapes of our training data set. Average misclassification
rate over all the classifiers on the testing data set is 5.3%.

C. Segmentation evaluation

Independently from the training set of 30 images, 7 sub-
volumes were manually segmented with the GUI in order
to confront expert segmentation with our automatic method.
Segmentation ”by hand” ended up with 86 detected and
segmented nuclei.

Fig. 5. Examples of manual segmentation and labeling. Green dots are
configurations of MST’s nodes that must be labeled as nuclei. Red dots are
configurations of MST’s nodes that must be labeled as unacceptable shapes.

Fig. 6. Left: Initial over-segmentation. Right: Refined segmentation with
optimal cut of the spanning tree.

For automatic segmentation, we used a tolerance parameter
of 0.5 for the optimal cut procedure i.e. a region Ri will not
appear in the segmented image if Pi,nucleus < 0.5. In these
conditions, our method detected and segmented 83 nuclei.
Each automatically segmented nucleus appears to be in the
set of manually segmented ones. Though the method missed
3 nuclei, detected and segmented objects seem to be reliable.

Further testing has to be done with a larger set of images,
acquired from different biological experiments and image
acquisition settings or devices, in order to test robustness of
the described method.

IV. DISCUSSION AND CONCLUSION

We proposed a segmentation method of cells nuclei in
3-D immunofluorescence images. The method is part of the
numerous approaches that seek best fusion configurations in a
set of image fragments to fit nuclei models. We described an
original method, based on minimum spanning trees of a region
adjacency graph, to address the combinatorial problem of
fusion configurations exploration and we proposed to replace
heuristic and Bayesian region-ranking rules by the use of a
powerful classifier.

However, current development remains a preliminary work.
From a machine-learning point of view, data sets we used
are relatively small and cannot be representative of data
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variability since they are extracted from only two different
images acquired with the same device. Thus, performances of
the classifier are not intensively tested and its ability to classify
heterogeneous populations of cells still has to be proven.

Finally, as in many similar approaches, a tremendous improve-
ment would be to free ourselves from designing nuclei models
”by hand” and obtain features with less subjectivity with
solutions like stacked autoencoders or others deep learning
approaches.
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