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ABSTRACT

This paper deals with the reconstruction of gray level images from unoriented tomographic projections
as it occurs in cryo-electron microscopy. Classical methods proceed in three steps: first, angular
assignation, then image reconstruction from angular information and input projections and finally
angular assignation refinement from the reconstructed image. We propose in this paper to perform the
angular assignation and the image reconstruction at the same time. The main idea is to compare the
input projections with the projections obtained from the image being reconstructed and the angular
information. Our method is available for ab initio reconstruction and based on a cost optimization
using the simulated annealing algorithm. A comparison with a state-of-the-art method (based on the
spherical Local Linear Embedding) from the literature on a set of 2D gray-level images is done and it
shows the better result of our method. The case where projections from different objects are acquired
can also occur in cryo-electron microscopy (e.g. deformable molecule reconstruction). The feasibility
of a reconstruction by our method in this case is shown on 2D images. Moreover our method can be
generalized to the 3D case.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and State of the Art

The problem of tomographic reconstruction from projections
with unknown directions is encountered in various domains
such as medical imaging (e.g. when the patient is moving dur-
ing an X-ray scanner acquisition) or cryo-Electron Microscopy
(cryo-EM). In this latter mode of acquisition, a thin vitreous ice
layer containing specimens of a macromolecule is magnified
with an electron microscope. The orientations, relative to the
microscope, of the specimens in the solution are not known.
Thus the inputs of the object-reconstruction problem are 2D
projections of a 3D object (later called input projections) whose
relative views orientations are unknown. The image to recon-
struct is a 3D image. This paper addresses the problem of re-
construction in the cryo-EM case but the method is presented
for the (simpler) case of 2D gray-level image reconstruction.
It extends our article focused on single object reconstruction
(Ben Cheikh et al. (2014)) and explores the reconstruction fea-
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sibility in the case where the macromolecule is deformable and
different macromolecule states are present in the observations.

The reconstruction problem with unknown directions is usu-
ally addressed in two stages (Crowther (1971); De Rosier and
Klug (1968)): first, the projection directions are estimated, then
the reconstruction itself is computed using the estimated di-
rections (Frank (2006)). In his paper, Panaretos (2009) shows
that the object density can be estimated without direction as-
signment under assumptions on it. Nevertheless, the proposed
method is noise sensitive and has not been tested on real data
which are noisy. In 3D, the estimation step relies on al-
gorithms derived from common lines correlation (Bracewell
(1956); Crowther (1971); Van Heel (1987)). In 2D, the pro-
jection slice theorem (Bracewell (1956)) which is the base of
common line methods is no more useful. The distance used in
this case is generally the Euclidean distance. Consistency of the
projections moments has also been proved to lead to direction
assignment recovery in 2D under certain assumptions (Basu
and Bresler (2000); Goncharov and Gelfand (1988); Salzman
(1990)). To cope with the high dimensional data space, direc-
tion assignment algorithms use dimension reduction (Coifman
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et al. (2008); Fang et al. (2011)) or optimization (Elmlund et al.
(2008); Ogura and Sato (2006)). For the reconstruction step,
the main families of reconstruction methods are the algebraic
methods, iterative filtered back projection, and those using the
Fourier transform (Frank (2006)).

In the case where no previous reconstruction is available (so-
called ab initio case), the sequence of these two steps gives a
first reconstructed image whose quality is not always sufficient,
and then requires a refinement step (Elmlund et al. (2008);
Frank (2006)). The reconstructed image is used to refine the
projection directions and these directions can then be used to
improve the data reconstruction. This iteration reflects the fact
that if the estimated directions influence the reconstruction of
the image, the estimation of the image also affects the estima-
tion of directions. Indeed, the refined image produces projec-
tions that can be then compared to input projections (from the
acquisition equipment). Then, this allows to classify again the
input projections. But this does not allow the estimated image
to play its full role in the estimation of directions, since it is
built later. We propose a method that offers this possibility. It is
based on a simultaneous estimation of projection directions and
image. Moreover, the proposed method does not require clus-
tering or other supervised step and then the obtained reconstruc-
tion are not biased by some user’s supervision. The method is
presented for 2D gray-level images to show its feasibility.

The cryo-EM supposes the specimens of the macromolecule
to be identical, but it occurs that distinct macromolecule confor-
mations are found in the same sample; e.g. if the distinct con-
formations cannot be chemically separated. Therefore the sin-
gle particle images have to be classified before the reconstruc-
tion step. Supervised classification is used to cope with this
case. In such a classification, a projection image is assigned to a
conformation and to a projection direction based on the 3D ref-
erence in the orientation producing the highest cross-correlation
coefficient. The ability to retrieve several structures from the
same sample even in the absence of specific reference struc-
tures has become one of the celebrated feats of single-particle
cryo-EM (Schwander et al. (2014)). Our method has a promis-
ing extension for the reconstruction of multi-conformational
molecule.

The paper is structured as follows: in Section 2, a model of
the acquisition is shown and the problem is specified; in Section
3, the proposed method is detailed and the associated cost func-
tion is studied; in Section 4, the choice and the implementation
of the optimization is presented; in Section 5 an extension to
multi-object reconstruction is presented and evaluated then re-
sults are given in Section 6. Conclusion and perspectives end
this paper.

2. Model and Problem

An acquisition in cryo-electron microscopy generates several
images of the object acquired simultaneously in several direc-
tions. We assume here that the shortcomings of the acquired
data (defocusing, contrast transfer function, aberrations, cen-
ters of gravity not placed at the origin of the coordinate system,
etc.) have been corrected during pre-processing step. We first

present the tomographical acquisition model for one direction,
then for several directions.

For one direction, a parallel electron-beam is emitted and
its intensity is measured after it went through the study object.
This measured intensity is function of the object density (elec-
tronic density in the case of electron microscopy).

Let B2 = {x ∈ R2| ‖x‖ ≤ 1} be the unit ball of R2. We call
K the set of the bounded measurable functions f (for the usual
measure of Lebesgues) from the unit ball B2 in R+ such that f
is derivable and ‖∇ f ‖1 =

∫
B2
|∇ f | < ∞

Remark 2.1. As f is bounded,

‖ f ‖2 =

∫
B2

| f |2 < ∞

Definition 2.2 (Projection). Let f be a function of K. The pro-
jection of the object f in the direction θ is a measurable function
given by

π( f , θ) : s ∈ R 7→
∫ 1

−1
f (s · eiθ + t · ei(θ+ π

2 ))dt

The projection π( f , θ) is a bounded measurable function with
support in [−1, 1] and s is the distance to the origin.

Finally, let introduce an operator for the simultaneous acqui-
sition of several projections. Let n ∈ N∗ and Θ = (θ1, . . . , θn) ∈
Sn where S is the planar angle set, we define the acquisition
operator Π:

Π : ( f ,Θ) ∈ K × Sn 7→ Π( f ,Θ) = {π( f , θ), θ ∈ Θ}

The set of all the projections Π( f ,Θ) is called sinogram.

Remark 2.3. For θ̃i = θi mod 2π such that 0 ≤ θ̃i < 2π, the set
Θ is classically sorted such that θ̃1 ≤ . . . ≤ θ̃n.

With these notations, the classical reconstruction process can
be reformulated as follows:

1. an estimation Θ̂ = {θ̂1, . . . , θ̂n} from the acquired projec-
tions {π1 = π( f , θ1), . . . πn = π( f , θn)} for their directions,

2. a reconstruction of an object f̂ from the oriented projec-
tions {(π1, θ̂1), . . . , (πn, θ̂n)}.

In this process, the final result is the reconstructed object, the
direction estimation being only an intermediate step. To ac-
count for the observation of the mutual influence between the
direction estimation and the object reconstruction, we propose
to jointly reconstruct the orientations and the object, which cor-
responds to the problematic:
From the input data {π1, . . . , πn}, find ( f̂ , Θ̂) such that

Π( f̂ , Θ̂) = {π1, . . . , πn}. (1)

The reconstructed object is obtained by selecting the first
component f̂ of the solution. As for the classical problem, the
solution is defined modulo a rotation.
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3. Method

Our solution to (1) is to provide an object f and directions
Θ = {θ1, . . . , θn} and evaluate them through a cost function J P
depending on the input projections P = {π1, . . . πn}, taking as
arguments an object and a set of directions ( f ,Θ) with positive
values:

J P :

K × Sn → R+

( f ,Θ) 7→ J P( f ,Θ)

Therefore, the solutions are estimated by computing:

( f̂ , Θ̂) = argmin f ,Θ J P ( f ,Θ) (2)

The cost function J P is based on three elements which are
an image I, a set of directions Θ and the given projections. It
is classically formed of a residual norm that estimates an error
between the given projections P and projections {π( f , θ), θ ∈
Θ}:

J P( f ,Θ) =

n∑
i=1

‖πi − π( f , θi)‖22 (3)

Remark 3.1. As the noise present in the electron microscopy
data is Gaussian, the chosen L2 norm gives a robust estimator.

A discrete version of the cost function is presented below.
We introduce the discrete gray-level image

f r :

Z2 → R+

(i, j) 7→ f r(i, j)

such that
f r(i, j) = b f (ri − 1/2, r j − 1/2)c

for all (i, j) ∈ Z2 where r is a positive real standing for the
resolution and b·c is the integer part. As the continuous function
f belongs to the function set K, its support is in the unit ball B2,
then

f r(i, j) = 0 for |i|, | j| ≥ m ∈ Z

where m > M = 1
2r . We note

Kr = { f r | f ∈ K} .

For 1 6 i 6 n, we denote (Pr
i, j) j=−M...M a digitization of

the given projection πi and Πr a digitization of the projection
operator. Then

(Qr
i, j) j=−M...M = Πr( f r, θi)

is a digital projection. The matrices Pr and Qr are digital sino-
grams. Note that Qr depends on f r and Θ. For a given resolu-
tion r, we define a digitization Jr

P of J P as:

Jr
P(Pr, f r,Θ) =

1
k22Mn

n∑
i=1

M∑
j=−M

(Pi, j − Qi, j)2, (4)

where k is the number of gray levels.
This cost function has the following property of partial con-

vexity.

Proposition 3.2 (Convexity on the pixel values). Let Pr be the
set of projections of a function f ∈ K against Θ = (θ1, . . . , θn) ∈
Sn. Let a pixel p ∈ {1, . . . , n}2 and a discrete function gr

0. We
define the operator Gr

p : t ∈ R+ 7→ Gr
p(t) ∈ Kr by

Gr
p(t) : q ∈ {1, . . . , n}2 7→ gr

0(q) + (t − gr
0(p))χ{p}(q) ∈ R+

where χE is the characteristic function of the set E. Then the
function

ϕ : t ∈ R+ 7→ Jr
P(Pr,Gr

p(t)),Θ)

is convex.

In Proposition 3.2, gr
0 stands for the current image and Gr

p(t)
is the current image whose value on the pixel p has been
changed to t: for a pixel q , p, one has

Gr
p(t)(q) = gr

0(q) + 0

and for the pixel p,

Gr
p(t)(p) = gr

0(p) + (t − gr
0(p)) = t .

Then the property reflects the convexity of the cost in function
of the value at the pixel p. Its proof relies on the fact that the
cost is a quadratic sum in function of the pixel values.

Proof. We prove the convexity of ϕ by showing that its second
derivative is positive.

Let u ∈ R+, a direction index i ∈ {1, . . . , n}, a projection-pixel
index j ∈ {−M, . . . ,M} and a pixel p = (px, py).

Let first compute the derivative of

αi, j : t 7→ Pi, j − Qi, j(t),

where

Qi, j(t) = Πr(Gr
p(t), θi) =

M∑
k=−M

M∑
l=−M

ω
i, j
k,lG

r
p(t)(k, l)

is the digital projection of Gr
p(t)) with (ωi, j

k,l) positive weights
given by the projection operator. Then

∂αi, j

∂t
(u) =

∂(Pi, j − Qi, j)
∂t

|u

= −
∂Qi, j

∂t
|u

= −
∂

∂t

 M∑
k=−M

M∑
l=−M

ω
i, j
k,lG

r
p(k, l)

 |u
= −

∂ω
i, j
px,pyG

r
p(px, py)

∂t
|u

then
∂αi, j

∂t
(u) = −ω

i, j
px,py , (5)

and
∂2αi, j

∂t2 (u) = 0. (6)



4

So, we have for ϕ

∂2 Jr
P(Pr,Gr

p,Θ)

∂t2 |u =
∂2

∂t2

 n∑
i=1

M∑
j=−M

‖Pi, j − Qi, j‖
2
2

 |u

= 2
n∑
1

∥∥∥∥∥∥∂(Pi, j − Qi, j)
∂t

|u

∥∥∥∥∥∥2

2
+ < Pi, j − Qi, j,

∂2(Pi, j − Qi, j)
∂t2 |u >


where <, > is the Euclidean scalar product. Then when replac-
ing with αi, j, we obtain

∂2 Jr
P(Pr,Gr

p,Θ)

∂t2 |u = 2
n∑
1

∥∥∥∥∥∥∂αi, j

∂t
|u

∥∥∥∥∥∥2

2
+ < αi, j,

∂2αi, j

∂t2 |u >


with (5) and (6)

∂2 Jr
P(Pr,Gr

p,Θ)

∂t2 |u = 2
n∑
1

(ωi, j
px,py )

2.

Thus
∂2ϕ

∂t2 |u =
∂2 Jr

P(Pr,Gr
p,Θ)

∂t2 |u > 0.

Proposition 3.2 helps to speed up the image convergence to-
ward the minimum when the current directions are near the true
directions.

4. Optimization

Even if the cost function Jr
P is convex in function of the pix-

els values (Prop. 3.2), it is not convex in function of the di-
rection values in general ; e.g. if an image f has two simi-
lar projections π( f , θi) and π( f , θ j) (e.g. in the case of a sym-
metry) then permuting θi and θ j in Θ will not change the cost
value a lot and can correspond to a local minimum of the cost
Jr

P. Deterministic optimization methods are not suitable for
non-convex cost function since they likely give local minima.
Thus we turn towards heuristic optimization methods. Several
state-of-the-art methods have been tested and among these non-
deterministic methods, the Simulated Annealing (SA) appears
to give relevant results to minimize the cost Jr

P. It is an iterative
optimization method based on the Metropolis algorithm (Kirk-
patrick et al. (1983)). The algorithm starts from an initial state
of the system with an initial temperature T = T0. At each iter-
ation of the SA, a modification of the system is proposed. This
modification is evaluated by the cost function Jr

P
T and causes a

variation ∆Jr
P

T . If the variation is negative, the proposed mod-
ification is accepted. Otherwise, it is accepted with a proba-

bility e−
∆Jr

P
T (Metropolis rule). The temperature T decreases at

each iteration toward zero following some annealing schedule.
When the temperature T is high, the cost function Jr

P
T is flat

and allows almost all modifications to be accepted. Then vari-
ation amplitude of the cost function Jr

P
T becomes bigger when

the temperature T decreases, allowing less modifications.
At each iteration, the modification of the system (Im,Θ) is

based on:

1. an elementary modification of the image Im by picking
randomly a pixel and assigning to it a random gray-level
value,

2. an elementary modification of the set Θ by selecting ran-
domly a direction and assigning to it a random value (a
number corresponding to a projection from the set P).

The process stops when modifications are refused n0 times. The
algorithm of the minimization process is shown in Alg. 1 (for
sake of simplicity, f r is noted f ). In order to gain efficiency, the
search space is sampled.

Algorithm 1 Reconstruction algorithm
initialization f (0),Θ(0),T0
while iter < scmax do

if iteration is pair then
elementary modification of the current image f crt

else
elementary modification of the current set Θcrt

end if
if ∆J P < 0 then

modification accepted
else

r ← random value ∈ [0, 1]
if r < e−

∆J P
T then

modification accepted
else

modification rejected
iter ← iter + 1

end if
end if
T ← T0e−λT

end while
return f crt

Note that the indices of the projections {π1, . . . , πn} are arbi-
trary and as the direction set Θ is ordered only in function these
indices, the values θ1, . . . , θn are not ordered during the problem
resolution.

Choice of Parameters

The parameters of the simulated annealing are:

• the initial temperature T0,

• the cooling schedule,

• the initial state ( f (0),Θ(0)),

• the stopping criterion scmax.

Different types of temperature decay functions have been
tested. The exponential decreasing functions give the better re-
sults with low decay rates λ and high initial temperatures T0.
The other parameters have been tuned for each resolution and
each projection number so as to minimize the criterion of the
average reconstruction error on a set of 50 images. The best
parameters values depend on the image resolution and are gath-
ered in Table 1.
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Table 1. Optimal parameters of the simulated annealing in terms of image
resolution. The number of the projections is twice the image size.

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256
decay rate λ 1 10−1 10−3 10−4 10−5

initial temperature T0 1 10 102 103 103

convergence time 7 sec 22 sec 7.2 min 25.3 min 3h20min

These parameters values allow the algorithm to widely ex-
plore the research space and to converge robustly toward the so-
lution of (2). It should be noted that the parameters used for the
simulation come from a compromise between the quality of the
reconstruction and the process duration. Several initial images
have been tested but they don’t affect the final reconstruction
quality since the initial temperature chosen is high. Indeed, a
high temperature allows almost any modification of the system
therefore the properties given to the initial image can be totally
lost after few iterations. The set of the initial directions Θ(0) is
chosen as a uniformly randomized sample. The optimization
algorithm converges to a solution of (2) when the cost func-
tion Jr

P approaches zero. As the cost function has many local
minima, the algorithm may be trapped in one of these local min-
ima and then cannot reach the optimal solution. Therefore we
define another stopping criterion taking into account the num-
ber of consecutive iterations where the system does not change.
Once a maximum number is reached the process is stopped.
This number is set empirically to scmax = 200 iterations.

The search space is large i.e. ({1, . . . , k})n×([0, π)m where k is
the number of gray levels, n the number of pixels, m the number
of projections. Then we propose to sample the angular research
space [0, π) to reduce the research space and to improve the
optimization. Under the hypothesis that the directions of the
projections are uniformly distributed on [0, π), we propose a
regular sampling with a step of π

m . With this sampling, our
search space comes down to ({1, . . . , k})n × ({1, . . . ,m})m. A big
sampling step gives a smaller research space but increases the
reconstruction error. Then the choice of a sampling step results
from a compromise between the reconstruction error and the
research space size.

Even if it is clear that the image and the directions influence
each other, it is possible that their mutual influence is minor.
Figure 1 offers the possibility to show the importance of the
mutual influence on a reconstruction of an image. Let us note
cim(i) the correlation between the original and the reconstructed
image at the iteration i of the minimization process and cdir(i)
the correlation between the original and the reconstructed pro-
jection directions also at the iteration i. Figure 1 represents the
set of points (cdir(i), cim(i)), 1 ≤ i ≤ 140000, where i = 1 stands
for the first iteration of the optimization process and i = 140000
for the last one.

Between these two bounds, the optimization process can be
cut in three parts:

1. a search part (bottom left part of the graph, points in dark
blue),

2. a joint reconstruction of the directions and image (points
in blue to cyan),

3. a part where direction reconstruction –almost done– is re-
fined while the image reconstruction still progresses based

Fig. 1. On the abscissas (resp. on the ordinates), representation of the
correlation between the original directions (resp. the original image) and
the reconstructed projection directions (resp. the reconstructed image) for
each step of the optimization process

on that directions, (cyan to red points).

The second part shows that the mutual influence is impor-
tant in this reconstruction process. This mutual influence is not
taken into account in the classical process which searches first
the consistency between the projections (when estimating the
directions).

5. Multiconformation Reconstruction

A macromolecular complex can present distinct conforma-
tions (or states). These conformations are of biological in-
terest because they are often linked to the functions of the
macromolecule. Therefore we present here an extension of our
method to the case of multiconformation reconstruction. In this
case, the projections are not only obtained from unknown an-
gles but also from unknown conformations. In fact, each pro-
jection corresponds to one of the unknown states of the macro-
molecule.

The number of the conformations existing among the spec-
imens is unknown and the number of projections per confor-
mation is also unknown. But for the simplest, we supposed
here that we initially have a set P of P data projections and
we seek to reconstruct K images corresponding to K different
states f1, . . . , fK of the macromolecule. We also suppose that
there exists a set of N projections per state, where N × K = P.
Thus, the problematic is:
From the input data set P = {π1, . . . , πP}, for each 1 ≤ i ≤ K
find ( f̂i, Θ̂i) and a set {πi,1, . . . , πi,N} ⊂ P such as

Π( f̂i, Θ̂i) = {πi,1, . . . , πi,N},

We propose to extend our method by reconstructing, from
a large set of input data projections, not only a pair of object
and directions ( f̂ , Θ̂) but a set of pairs {( f̂1, Θ̂1), . . . , ( f̂K , Θ̂K)}
jointly. To handle this, a set of objects { f1, . . . , fK} and a set
of current directions {Θ1, . . . ,ΘK} are provided, where Θi =

{θi,1, . . . , θi,N}. The corresponding cost function JP is a sum
wherein each term corresponds to the cost function J P defined
in (3) to each image reconstruction:
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JP({ f1, . . . , fK}, {Θ1, . . . ,ΘK}) =

K∑
i=1

N∑
n=1

∥∥∥πi,n − π( fi, θi,n)
∥∥∥2

2

(7)
There is no cost computed between projections from distinct

states, then the cost is computed as if the states were indepen-
dent. At each iteration of the simulated annealing, the modifi-
cation of the system ({ f1, . . . , fK}, {Θ1, . . . ,ΘK}) is based on:

• (i) an elementary modification of the set of the images by
selecting randomly an image and assigning a random gray-
level value to a random pixel,

• (ii) an elementary modification of the set of the projections
by selecting randomly a projection and assigning it to a
random image and a random direction.

6. Results

6.1. Single Conformation Reconstruction Results

The proposed method has been applied to a set of 50 gray-
level images of different resolutions (16 × 16, 32 × 32, 64 × 64,
128 × 128 and 256 × 256), referred to as phantoms. The phan-
toms are generated randomly by a Matlab program1. A set of
projections uniformly distributed has been generated from the
images. A random direction has been assigned to each projec-
tions.

There is not much methods in 2D to compare our results with
because most of the methods are reconstruction methods with
known angles. Fang et al. (2011) present a method that es-
timates the directions and reconstructs the object. The direc-
tion estimation is done by a spherical Local Linear Embedding
(sLLE) method and the object reconstruction is done thanks to
a filtered backprojection.

An illustration of image reconstructions by our method is
presented in Figure 2 for a single image at different resolu-
tions. We also reconstruct the images by Fang’s method. It
gives worser reconstruction results than our method. We pro-
vide a quantitative measure for the reconstruction performance
which is the mean square error (MSE) between the phantom
image and the reconstructed image. The MSE is normalized
with the number of gray-scale and the area of the disk inscribed
in the image support:

MS E =
1

kπ( N
2 )2

N∑
i=1

N∑
j=1

(I(i, j) − Î(i, j))2 (8)

Where I is the original image, Î is the reconstructed image, N
is the size of the images and k is the number of gray levels.

The reconstruction errors are presented in Figure 3. For each
of the 50 phantoms, 10 reconstructions have been carried out
and only the best one is retained. The best image corresponds
to the reconstruction with the minimum cost value.

1Images and program are available at http://rhodes;unistra.fr/en/
images/c/cc/DB_50_gray_images_5_resol.zip/

Original Our method sLLE

16
×

16
32
×

32
64
×

64
12

8
×

12
8

25
6
×

25
6

Fig. 2. A database image at different resolutions and its reconstructions by
our method and by the method sLLE of Fang et al. (2011).

The robustness of the method against white noise has also
been evaluated. A Gaussian noise with zero mean and standard
deviation σ = 5, 15 and 50 has been added to the projections.

Example of reconstructions (Figure 4) and the reconstruc-
tion errors of phantoms of size 64×64 are shown for each noise
level (Figure 5).The robustness of the method is good for low
noise levels and the visual image quality decreases from the 40-
standard deviation Gaussian noise. This behavior is logical as
angular assignation is difficult from noisy projections. More-
over image reconstruction needs a larger number of projections
with noise than without noise. This shows that our method need
to pre-process the noisy projections to achieved a better robust-
ness.

6.2. Multiconformation Reconstruction Results

The proposed method has been applied to 80 gray-level im-
ages of 128×128 pixels representing 20 macromolecules in sev-
eral deformations2. A set of projections uniformly distributed

2Images are available at http://www.molmovdb.org
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Fig. 3. Mean value and standard deviation (on 50 reconstructions) of the
MSE between the reconstructed images and original images in function of
the image size.

has been calculated from each image. As the image to which
belongs a projection must be unknown, a random image index
has been given to each projection and a random direction has
been assigned to it.

For each of the 20 macromolecules, 20 reconstructions have
been performed and only the best one (corresponding to the
lower cost) was retained. Figure 6 shows reconstructed im-
ages by our method of four different states of the same macro-
molecule. The reconstructed image quality is still as good as
in the single-conformation reconstruction case. The measure of
reconstruction error used here is the same MS E as previously,
applied to each state separately. The reconstruction errors are
presented in Table 2.

Table 2. The Mean Square Error between the reconstructed images and
the original images with different number of conformations and the corre-
sponding Standard Deviations

Conformation number 1 2 3 4
Mean Square Error 0.089 0.261 0.374 0.416
Standard Deviation 0.069 0.094 0.093 0.091

The increase of the error with the number of conformations
can be explained by the resemblance between some projections
of different states which can generates an incorrect assignation
of projections to an image and which can correspond to a lo-
cal minimum of the cost function. These results show that the
extension of our method to the ab initio reconstruction of sev-
eral conformations is possible and it shows the path to the 3D
multiconformation case.

7. Conclusion

This paper presents a new method for ab initio reconstruc-
tion of 2D gray level images. The proposed method assigns
the projection orientations and reconstructs the image simulta-
neously. The process relies on the minimization of a residual
norm between the original set of projections and the projec-
tions computed from the estimated image and directions. The

Sinogram Reconstruction

σ
=

5
σ

=
15

σ
=

50

Fig. 4. For a single image, the sinogram is noised with Gaussian noise of
variance σ = 5, 15, 50. The reconstruction by our method is shown for
each noise level.

Fig. 5. Mean value and standard deviation of the wrong-pixels proportion
in the reconstructed images in function of the additive Gaussian noise level.

optimization is made by a simulated annealing algorithm in a
sampled direction space and does not require clustering or other
supervised step.

Our method have been experimented on gray-level images
at different resolutions and its robustness has been evaluated
against different Gaussian noise levels. The results are good
for an ab initio reconstruction method even without post-
processing.

Instead of increasing the reconstruction number, we will take
advantage of the good results of the low-resolutions by inte-
grating them in a multi-resolution process in our future works.
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Fig. 6. (i) A macromolecular complex presented in different conformations.
(ii) Its simultaneous reconstructions results. (iii) Global Mean Square Er-
ror of all reconstructions

Moreover, some experiments show the ability of our method to
reconstruct deformable objects. The method will be extended
to 3D objects in further works. Another perspective is to study
and improve the cost function by introducing prior information
on the set of projections (e.g. exploiting the Ludwig Helgason
property Natterer (1986)) and on the image (e.g. smoothness).
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